Advertisement

Synthesis of n-Butyl Levulinate Using Mesoporous Zeolite H-BEA Catalysts with Different Catalytic Characteristics

  • Dhara H. Morawala
  • Ajay K. Dalai
  • Kalpana C. MaheriaEmail author
Article
  • 15 Downloads

Abstract

The present work focuses on the utilization of waste biomass for the improvement of key catalytic properties of conventional zeolite H-BEA. In the present endeavor, zeolite H-BEA has been modified using cetyltrimethyl ammonium bromide (CTAB) and rice husk (a waste biomass resource), via desilication post synthetic route, which is not reported so far. The synthesized mesoporous zeolite H-BEA catalysts have been characterized by various characterization techniques such as, SEM, 27Al and 29Si MAS-NMR, wide and low angle XRD, ICP-OES, FT-IR, TGA, NH3-TPD and BET surface area. The resultant mesoporous zeolite materials (MCCK and MCRK) exhibited bimodal porosity as well as improved physicochemical properties, and the utility of these modified zeolites as heterogeneous catalysts has been demonstrated in the production of n-butyl levulinate via levulinic acid (LA) esterification. The catalytic material, which has been modified using CTAB and rice husk, is found to exhibit better catalytic activity towards the synthesis of n-butyl levulinate (95.6%) as compared to other zeolite counterparts under the optimised reaction conditions, which is attributed to its enhanced surface area and lower Si/Al ratio as compared to other catalysts under study.

Graphic Abstract

Keywords

Mesoporous zeolite H-BEA Rice husk Waste biomass utilization Esterification n-Butyl levulinate 

Abbreviations

CTAB

Cetyltrimethyl ammonium bromide

MCCK

Micro–meso composite prepared using CTAB in Dr. Kalpana Maheria’s laboratory

MCRK

Micro–meso composite prepared using CTAB and rice husk in Dr. Kalpana Maheria’s laboratory

SEM

Scanning electron microscope

27Al MAS-NMR

27A1 magic angle spinning-nuclear magnetic resonance

29Si MAS-NMR

29Si magic angle spinning-nuclear magnetic resonance

XRD

X-ray diffraction

ICP-OES

Inductively coupled plasma-optical emission spectrometry

FT-IR

Fourier transform infra-red

TGA

Thermogravimetric analysis

NH3-TPD

Ammonia temperature program desorption

BET

Brunauer–Emmett–Teller

BJH

Barrett Joyner Halenda

LA

Levulinic acid

GC

Gas chromatography

FID

Flame ionization detector

Wt.

Weight

KBr

Potassium bromide

Notes

Acknowledgements

The authors wish to thank Director, Sardar Vallabhbhai National Institute of Technology, Surat, India for providing research facilities and Rajiv Gandhi National Fellowship (201516-RGNF-2015-17-SC-GUJ-24568), UGC, New Delhi, India, for financial assistance. The authors thank Sud-Chemie India Pvt. Ltd., Vadodara, India, for providing zeolite samples. The authors acknowledge Department of Science and Technology (DST), New Delhi, Government of India [Grant No.: DST/TM/WTI/2K14/191(G), dated: 23/02/2015] awarded to Dr. Kalpana C. Maheria for equipment/instrument support, needed for the catalysts’ synthesis.

Supplementary material

10562_2019_3005_MOESM1_ESM.docx (869 kb)
Supplementary material 1 (DOCX 868 kb)

References

  1. 1.
    Nandiwale KY, Pande AM, Bokade VV (2015) RSC Adv 5:79224–79231.  https://doi.org/10.1039/C5RA13520F CrossRefGoogle Scholar
  2. 2.
    Jin L, Xie T, Liu S, Li Y, Hu H (2016) Catal Commun 75:32–36.  https://doi.org/10.1016/j.catcom.2015.12.002 CrossRefGoogle Scholar
  3. 3.
    Groen JC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez J (2007) J Am Chem Soc 129:355–360.  https://doi.org/10.1021/ja065737o CrossRefPubMedGoogle Scholar
  4. 4.
    Rani P, Satpati B, Srivastava R (2017) Chem Sel 2:2870–2879.  https://doi.org/10.1002/slct.201700308 CrossRefGoogle Scholar
  5. 5.
    Groen JC, Sano T, Moulijn JA, Pérez-Ramírez J (2007) J Catal 251:21–27.  https://doi.org/10.1016/j.jcat.2007.07.020 CrossRefGoogle Scholar
  6. 6.
    García-Martínez J, Johnson M, Valla J, Li K, Ying JY (2012) Catal Sci Technol 2:987–994.  https://doi.org/10.1039/c2cy00309k CrossRefGoogle Scholar
  7. 7.
    Verboekend D, Milina M, Mitchell S, Pérez-Ramírez J (2013) Cryst Growth Des 13:5025–5035.  https://doi.org/10.1021/cg4010483 CrossRefGoogle Scholar
  8. 8.
    Le VH, Thuc CNH, Thuc HH (2013) Nanoscale Res Lett 8:58.  https://doi.org/10.1186/1556-276x-8-58 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bozell JJ, Petersen GR (2010) Green Chem 12:539.  https://doi.org/10.1039/b922014c CrossRefGoogle Scholar
  10. 10.
    Maheria KC, Kozinski J, Dalai A (2013) Catal Letters 143:1220–1225.  https://doi.org/10.1007/s10562-013-1041-3 CrossRefGoogle Scholar
  11. 11.
    Démolis A, Essayem N, Rataboul F (2014) ACS Sustain Chem Eng 2:1338–1352.  https://doi.org/10.1021/sc500082n CrossRefGoogle Scholar
  12. 12.
    Yang J, Li G, Zhang L, Zhang S (2018) Catalysts 8:14.  https://doi.org/10.3390/catal8010014 CrossRefGoogle Scholar
  13. 13.
    Serrano-Ruiz JC, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Ramos-Fernández JM (2012) Catal Today 195:162–168.  https://doi.org/10.1016/j.cattod.2012.01.009 CrossRefGoogle Scholar
  14. 14.
    Nandiwale KY, Sonar SK, Niphadkar PS, Joshi PN, Deshpande SS, Patil VS, Bokade VV (2013) Appl Catal A 460–461:90–98.  https://doi.org/10.1016/j.apcata.2013.04.024 CrossRefGoogle Scholar
  15. 15.
    Manikandan K, Cheralathan KK (2017) Appl Catal A 547:237–247.  https://doi.org/10.1016/j.apcata.2017.09.007 CrossRefGoogle Scholar
  16. 16.
    An S, Song D, Lu B, Yang X, Guo YH (2015) Chemistry A 21:10786–10798.  https://doi.org/10.1002/chem.201501219 CrossRefGoogle Scholar
  17. 17.
    Nur AS, Sivasubramaniam D, Nor Aishah SA (2017) Bioenergy Res 10:1105–1116.  https://doi.org/10.1007/s12155-017-9872-1 CrossRefGoogle Scholar
  18. 18.
    Chen Y, Zhang X, Dong M, Wu Y, Zheng G, Huang J, Guan X, Zheng X (2016) J Taiwan Inst Chem Eng 61:147–155.  https://doi.org/10.1016/j.jtice.2015.12.005 CrossRefGoogle Scholar
  19. 19.
    Wu M, Zhang X, Su X, Li X, Zheng X, Guan X, Liu P (2016) Catal Commun 85:66–69.  https://doi.org/10.1016/j.catcom.2016.07.023 CrossRefGoogle Scholar
  20. 20.
    Li N, Jiang S, Liu Z, Guan X, Zheng X (2019) Catal Commun 121:11–14.  https://doi.org/10.1016/j.catcom.2018.12.007 CrossRefGoogle Scholar
  21. 21.
    Li J, Liu H, An T, Yue Y, Bao X (2017) RSC Adv 7:33714–33725.  https://doi.org/10.1039/C7RA05298G CrossRefGoogle Scholar
  22. 22.
    Derouane EG, Schmidt I, Lachas H, Christensen CJH (2004) Catal Letters 95:13–17.  https://doi.org/10.1023/B:CATL.0000023715.41857.56 CrossRefGoogle Scholar
  23. 23.
    Mistry SR, Maheria KC (2014) J Catal Catal 1:1–21Google Scholar
  24. 24.
    Unpublished work: K. Maheria, S. Mistry, J. Kozinski and A. Dalai, Development of novel mesozeolite BEA and their application in biomass derived value added chemical synthesisGoogle Scholar
  25. 25.
    Morawala D, Dalai A, Maheria K (2018) J Porous Mater 26:677–686.  https://doi.org/10.1007/s10934-018-0664-6 CrossRefGoogle Scholar
  26. 26.
    Liu S, Chen X, Zhang A, Yan K, Ye Y (2014) BioResources 9:2328–2340.  https://doi.org/10.15376/biores.9.2.2328-2340 CrossRefGoogle Scholar
  27. 27.
    Dupuy B, Laforge S, Morais C, Bachmann C, Magnoux P, Richard F (2012) Appl Catal A 414:192–204.  https://doi.org/10.1016/j.apcata.2011.11.009 CrossRefGoogle Scholar
  28. 28.
    Tang B, Dai W, Sun X, Guan N, Li L, Hunger M (2014) Green Chem 16:2281–2291.  https://doi.org/10.1039/c3gc42534g CrossRefGoogle Scholar
  29. 29.
    Guo W, Huang L, Deng P, Xue Z, Li Q (2001) Microporous Mesoporous Mater 45:427–434CrossRefGoogle Scholar
  30. 30.
    Doremieux-Morin C, Ramsaran A, Le Van Mao R, Batamack P, Heeribout L, Semmer V, Denes G, Fraissard J (1995) Catal Letters 34:139–149.  https://doi.org/10.1007/BF00808330 CrossRefGoogle Scholar
  31. 31.
    Han S, Wang Z, Meng L, Jiang N (2016) Mater Chem Phys 177:112–117CrossRefGoogle Scholar
  32. 32.
    Gabla J, Mistry S, Kalpana M (2017) Catal Sci Technol 7:5154–5167.  https://doi.org/10.1039/C7CY01398A CrossRefGoogle Scholar
  33. 33.
    Laha SC, Venkatesan C, Sakthivel A, Komura K, Kim TH, Cho SJ, Huang SJ, Wu PH, Bin Liu S, Sasaki Y, Kobayashi M, Sugi Y (2010) Microporous Mesoporous Mater 133:82–90.  https://doi.org/10.1016/j.micromeso.2010.04.018 CrossRefGoogle Scholar
  34. 34.
    Saxena SK, Al-Muhtaseb AH, Viswanadham N (2015) Fuel 159:837–844.  https://doi.org/10.1016/j.fuel.2015.07.028 CrossRefGoogle Scholar
  35. 35.
    Marakatti VS, Halgeri AB (2015) RSC Adv 5:14286–14293.  https://doi.org/10.1039/C4RA16052E CrossRefGoogle Scholar
  36. 36.
    Sabarish R, Unnikrishnan G (2017) Powder Technol 320:412–419.  https://doi.org/10.1016/j.powtec.2017.07.041 CrossRefGoogle Scholar
  37. 37.
    Han S, Wang Z, Meng L, Jiang N (2016) Mater Chem Phys.  https://doi.org/10.1016/j.matchemphys.2016.04.003 CrossRefGoogle Scholar
  38. 38.
    Sun H, Wang A, Sun K, Jiang J, Wang F, Gu Z (2018) J Porous Mater.  https://doi.org/10.1007/s10934-018-0693-1 CrossRefGoogle Scholar
  39. 39.
    Patil CR, Niphadkar PS, Bokade VV, Joshi PN (2014) Catal Commun 43:188–191.  https://doi.org/10.1016/j.catcom.2013.10.006 CrossRefGoogle Scholar
  40. 40.
    Viswanadham N, Kamble R, Singh M, Kumar M, Murali Dhar G (2009) Catal Today 141:182–186.  https://doi.org/10.1016/j.cattod.2008.03.026 CrossRefGoogle Scholar
  41. 41.
    Sommer L, Mores D, Svelle S, Stöcker M, Weckhuysen BM, Olsbye U (2010) Microporous Mesoporous Mater 132:384–394.  https://doi.org/10.1016/j.micromeso.2010.03.017 CrossRefGoogle Scholar
  42. 42.
    Khiratkar AG, Balinge KR, Krishnamurthy M, Cheralathan KK, Patle DS, Singh V, Arora S, Bhagat PR (2018) Catal Lett 148:680–690.  https://doi.org/10.1007/s10562-017-2284-1 CrossRefGoogle Scholar
  43. 43.
    Das J, Parida KM (2007) J Mol Catal A 264:248–254.  https://doi.org/10.1016/j.molcata.2006.09.033 CrossRefGoogle Scholar
  44. 44.
    Enumula SS, Koppadi KS, Babu Gurram VR, Burri DR, Rao Kamaraju SR (2017) Energy Fuels 1:644–651.  https://doi.org/10.1039/c6se00103c CrossRefGoogle Scholar
  45. 45.
    Melero JA, Morales G, Iglesias J, Paniagua M, Hernández B, Penedo S (2013) Appl Catal A 466:116–122.  https://doi.org/10.1016/j.apcata.2013.06.035 CrossRefGoogle Scholar
  46. 46.
    Yadav GD, Nair JJ (2000) Langmuir 16:4072–4079CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dhara H. Morawala
    • 1
  • Ajay K. Dalai
    • 2
  • Kalpana C. Maheria
    • 1
    Email author
  1. 1.Applied Chemistry DepartmentSardar Vallabhbhai National Institute of TechnologySuratIndia
  2. 2.Department of Chemical and Biological EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations