Synthesis of n-Butyl Levulinate Using Mesoporous Zeolite H-BEA Catalysts with Different Catalytic Characteristics

  • Dhara H. Morawala
  • Ajay K. Dalai
  • Kalpana C. MaheriaEmail author


The present work focuses on the utilization of waste biomass for the improvement of key catalytic properties of conventional zeolite H-BEA. In the present endeavor, zeolite H-BEA has been modified using cetyltrimethyl ammonium bromide (CTAB) and rice husk (a waste biomass resource), via desilication post synthetic route, which is not reported so far. The synthesized mesoporous zeolite H-BEA catalysts have been characterized by various characterization techniques such as, SEM, 27Al and 29Si MAS-NMR, wide and low angle XRD, ICP-OES, FT-IR, TGA, NH3-TPD and BET surface area. The resultant mesoporous zeolite materials (MCCK and MCRK) exhibited bimodal porosity as well as improved physicochemical properties, and the utility of these modified zeolites as heterogeneous catalysts has been demonstrated in the production of n-butyl levulinate via levulinic acid (LA) esterification. The catalytic material, which has been modified using CTAB and rice husk, is found to exhibit better catalytic activity towards the synthesis of n-butyl levulinate (95.6%) as compared to other zeolite counterparts under the optimised reaction conditions, which is attributed to its enhanced surface area and lower Si/Al ratio as compared to other catalysts under study.

Graphic Abstract


Mesoporous zeolite H-BEA Rice husk Waste biomass utilization Esterification n-Butyl levulinate 



Cetyltrimethyl ammonium bromide


Micro–meso composite prepared using CTAB in Dr. Kalpana Maheria’s laboratory


Micro–meso composite prepared using CTAB and rice husk in Dr. Kalpana Maheria’s laboratory


Scanning electron microscope


27A1 magic angle spinning-nuclear magnetic resonance


29Si magic angle spinning-nuclear magnetic resonance


X-ray diffraction


Inductively coupled plasma-optical emission spectrometry


Fourier transform infra-red


Thermogravimetric analysis


Ammonia temperature program desorption




Barrett Joyner Halenda


Levulinic acid


Gas chromatography


Flame ionization detector




Potassium bromide



The authors wish to thank Director, Sardar Vallabhbhai National Institute of Technology, Surat, India for providing research facilities and Rajiv Gandhi National Fellowship (201516-RGNF-2015-17-SC-GUJ-24568), UGC, New Delhi, India, for financial assistance. The authors thank Sud-Chemie India Pvt. Ltd., Vadodara, India, for providing zeolite samples. The authors acknowledge Department of Science and Technology (DST), New Delhi, Government of India [Grant No.: DST/TM/WTI/2K14/191(G), dated: 23/02/2015] awarded to Dr. Kalpana C. Maheria for equipment/instrument support, needed for the catalysts’ synthesis.

Supplementary material

10562_2019_3005_MOESM1_ESM.docx (869 kb)
Supplementary material 1 (DOCX 868 kb)


  1. 1.
    Nandiwale KY, Pande AM, Bokade VV (2015) RSC Adv 5:79224–79231. CrossRefGoogle Scholar
  2. 2.
    Jin L, Xie T, Liu S, Li Y, Hu H (2016) Catal Commun 75:32–36. CrossRefGoogle Scholar
  3. 3.
    Groen JC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez J (2007) J Am Chem Soc 129:355–360. CrossRefPubMedGoogle Scholar
  4. 4.
    Rani P, Satpati B, Srivastava R (2017) Chem Sel 2:2870–2879. CrossRefGoogle Scholar
  5. 5.
    Groen JC, Sano T, Moulijn JA, Pérez-Ramírez J (2007) J Catal 251:21–27. CrossRefGoogle Scholar
  6. 6.
    García-Martínez J, Johnson M, Valla J, Li K, Ying JY (2012) Catal Sci Technol 2:987–994. CrossRefGoogle Scholar
  7. 7.
    Verboekend D, Milina M, Mitchell S, Pérez-Ramírez J (2013) Cryst Growth Des 13:5025–5035. CrossRefGoogle Scholar
  8. 8.
    Le VH, Thuc CNH, Thuc HH (2013) Nanoscale Res Lett 8:58. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bozell JJ, Petersen GR (2010) Green Chem 12:539. CrossRefGoogle Scholar
  10. 10.
    Maheria KC, Kozinski J, Dalai A (2013) Catal Letters 143:1220–1225. CrossRefGoogle Scholar
  11. 11.
    Démolis A, Essayem N, Rataboul F (2014) ACS Sustain Chem Eng 2:1338–1352. CrossRefGoogle Scholar
  12. 12.
    Yang J, Li G, Zhang L, Zhang S (2018) Catalysts 8:14. CrossRefGoogle Scholar
  13. 13.
    Serrano-Ruiz JC, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Ramos-Fernández JM (2012) Catal Today 195:162–168. CrossRefGoogle Scholar
  14. 14.
    Nandiwale KY, Sonar SK, Niphadkar PS, Joshi PN, Deshpande SS, Patil VS, Bokade VV (2013) Appl Catal A 460–461:90–98. CrossRefGoogle Scholar
  15. 15.
    Manikandan K, Cheralathan KK (2017) Appl Catal A 547:237–247. CrossRefGoogle Scholar
  16. 16.
    An S, Song D, Lu B, Yang X, Guo YH (2015) Chemistry A 21:10786–10798. CrossRefGoogle Scholar
  17. 17.
    Nur AS, Sivasubramaniam D, Nor Aishah SA (2017) Bioenergy Res 10:1105–1116. CrossRefGoogle Scholar
  18. 18.
    Chen Y, Zhang X, Dong M, Wu Y, Zheng G, Huang J, Guan X, Zheng X (2016) J Taiwan Inst Chem Eng 61:147–155. CrossRefGoogle Scholar
  19. 19.
    Wu M, Zhang X, Su X, Li X, Zheng X, Guan X, Liu P (2016) Catal Commun 85:66–69. CrossRefGoogle Scholar
  20. 20.
    Li N, Jiang S, Liu Z, Guan X, Zheng X (2019) Catal Commun 121:11–14. CrossRefGoogle Scholar
  21. 21.
    Li J, Liu H, An T, Yue Y, Bao X (2017) RSC Adv 7:33714–33725. CrossRefGoogle Scholar
  22. 22.
    Derouane EG, Schmidt I, Lachas H, Christensen CJH (2004) Catal Letters 95:13–17. CrossRefGoogle Scholar
  23. 23.
    Mistry SR, Maheria KC (2014) J Catal Catal 1:1–21Google Scholar
  24. 24.
    Unpublished work: K. Maheria, S. Mistry, J. Kozinski and A. Dalai, Development of novel mesozeolite BEA and their application in biomass derived value added chemical synthesisGoogle Scholar
  25. 25.
    Morawala D, Dalai A, Maheria K (2018) J Porous Mater 26:677–686. CrossRefGoogle Scholar
  26. 26.
    Liu S, Chen X, Zhang A, Yan K, Ye Y (2014) BioResources 9:2328–2340. CrossRefGoogle Scholar
  27. 27.
    Dupuy B, Laforge S, Morais C, Bachmann C, Magnoux P, Richard F (2012) Appl Catal A 414:192–204. CrossRefGoogle Scholar
  28. 28.
    Tang B, Dai W, Sun X, Guan N, Li L, Hunger M (2014) Green Chem 16:2281–2291. CrossRefGoogle Scholar
  29. 29.
    Guo W, Huang L, Deng P, Xue Z, Li Q (2001) Microporous Mesoporous Mater 45:427–434CrossRefGoogle Scholar
  30. 30.
    Doremieux-Morin C, Ramsaran A, Le Van Mao R, Batamack P, Heeribout L, Semmer V, Denes G, Fraissard J (1995) Catal Letters 34:139–149. CrossRefGoogle Scholar
  31. 31.
    Han S, Wang Z, Meng L, Jiang N (2016) Mater Chem Phys 177:112–117CrossRefGoogle Scholar
  32. 32.
    Gabla J, Mistry S, Kalpana M (2017) Catal Sci Technol 7:5154–5167. CrossRefGoogle Scholar
  33. 33.
    Laha SC, Venkatesan C, Sakthivel A, Komura K, Kim TH, Cho SJ, Huang SJ, Wu PH, Bin Liu S, Sasaki Y, Kobayashi M, Sugi Y (2010) Microporous Mesoporous Mater 133:82–90. CrossRefGoogle Scholar
  34. 34.
    Saxena SK, Al-Muhtaseb AH, Viswanadham N (2015) Fuel 159:837–844. CrossRefGoogle Scholar
  35. 35.
    Marakatti VS, Halgeri AB (2015) RSC Adv 5:14286–14293. CrossRefGoogle Scholar
  36. 36.
    Sabarish R, Unnikrishnan G (2017) Powder Technol 320:412–419. CrossRefGoogle Scholar
  37. 37.
    Han S, Wang Z, Meng L, Jiang N (2016) Mater Chem Phys. CrossRefGoogle Scholar
  38. 38.
    Sun H, Wang A, Sun K, Jiang J, Wang F, Gu Z (2018) J Porous Mater. CrossRefGoogle Scholar
  39. 39.
    Patil CR, Niphadkar PS, Bokade VV, Joshi PN (2014) Catal Commun 43:188–191. CrossRefGoogle Scholar
  40. 40.
    Viswanadham N, Kamble R, Singh M, Kumar M, Murali Dhar G (2009) Catal Today 141:182–186. CrossRefGoogle Scholar
  41. 41.
    Sommer L, Mores D, Svelle S, Stöcker M, Weckhuysen BM, Olsbye U (2010) Microporous Mesoporous Mater 132:384–394. CrossRefGoogle Scholar
  42. 42.
    Khiratkar AG, Balinge KR, Krishnamurthy M, Cheralathan KK, Patle DS, Singh V, Arora S, Bhagat PR (2018) Catal Lett 148:680–690. CrossRefGoogle Scholar
  43. 43.
    Das J, Parida KM (2007) J Mol Catal A 264:248–254. CrossRefGoogle Scholar
  44. 44.
    Enumula SS, Koppadi KS, Babu Gurram VR, Burri DR, Rao Kamaraju SR (2017) Energy Fuels 1:644–651. CrossRefGoogle Scholar
  45. 45.
    Melero JA, Morales G, Iglesias J, Paniagua M, Hernández B, Penedo S (2013) Appl Catal A 466:116–122. CrossRefGoogle Scholar
  46. 46.
    Yadav GD, Nair JJ (2000) Langmuir 16:4072–4079CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dhara H. Morawala
    • 1
  • Ajay K. Dalai
    • 2
  • Kalpana C. Maheria
    • 1
    Email author
  1. 1.Applied Chemistry DepartmentSardar Vallabhbhai National Institute of TechnologySuratIndia
  2. 2.Department of Chemical and Biological EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations