Advertisement

Photodeposition Conditions of Silver Cocatalyst on Titanium Oxide Photocatalyst Directing Product Selectivity in Photocatalytic Reduction of Carbon Dioxide with Water

  • Ahmed Hammad
  • Akihiko Anzai
  • Xing Zhu
  • Akira Yamamoto
  • Daiki Ootsuki
  • Teppei Yoshida
  • Ahmed EL-Shazly
  • Marwa Elkady
  • Hisao YoshidaEmail author
Article
  • 80 Downloads

Abstract

Ag-loaded TiO2 photocatalysts prepared by photodeposition method in an argon atmosphere exhibited highly selective photocatalytic activity for CO2 reduction with water to produce CO, while the sample prepared under an air atmosphere predominantly promoted water splitting.

Graphic Abstract

Keywords

Photocatalytic CO2 reduction Carbon monoxide Titanium oxide Silver cocatalyst Water splitting 

Notes

Acknowledgements

The author, A.S Hammad, gratefully acknowledges the Egyptian Ministry of Higher Education MOHE, which has granted him a full Ph.D. scholarship, and Egypt-Japan University (E-JUST), specially the TMD (Technology Management Department), for providing the facilities to accomplish this work. Additionally, the authors gratefully acknowledge all members of the Yoshida Lab, Kyoto University for the help and support they offered. This study was financially supported by a Grant-in-Aid for Scientific Research on Innovative Areas “singularity-structure project” (No. 17H05334) from JSPS, and the Program for Element Strategy Initiative for Catalysts & Batteries (ESICB), commissioned by the MEXT of Japan.

Compliance with Ethical Standards

Conflict of interest

No conflict of interest.

Supplementary material

10562_2019_2997_MOESM1_ESM.pdf (559 kb)
Supplementary material 1 (PDF 560 kb)

References

  1. 1.
    Ekwurzel B, Boneham J, Dalton MW et al (2017) The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers. Clim Change 144:579–590.  https://doi.org/10.1007/s10584-017-1978-0 CrossRefGoogle Scholar
  2. 2.
    Jiang Z, Xiao T, Kuznetsov VL, Edwards PP (2010) Turning carbon dioxide into fuel. Philos Trans R Soc 368:3343–3364.  https://doi.org/10.1098/rsta.2010.0119 CrossRefGoogle Scholar
  3. 3.
    Liu L, Li Y (2014) Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review. Aerosol Air Qual Res 14:453–469.  https://doi.org/10.4209/aaqr.2013.06.0186 CrossRefGoogle Scholar
  4. 4.
    Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349.  https://doi.org/10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  5. 5.
    Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874.  https://doi.org/10.1007/s10853-010-5113-0 CrossRefGoogle Scholar
  6. 6.
    Luttrell T, Halpegamage S, Tao J et al (2015) Why is anatase a better photocatalyst than rutile?—Model studies on epitaxial TiO2 films. Sci Rep 4:1–8.  https://doi.org/10.1038/srep04043 CrossRefGoogle Scholar
  7. 7.
    Riegel G, Bolton JR (2005) Photocatalytic efficiency variability in TiO2 particles. J Phys Chem 99:4215–4224.  https://doi.org/10.1021/j100012a050 CrossRefGoogle Scholar
  8. 8.
    Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549.  https://doi.org/10.1021/jp0273934 CrossRefGoogle Scholar
  9. 9.
    Sclafani A, Herrmann JM (1996) Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J Phys Chem 100:13655–13661.  https://doi.org/10.1021/jp9533584 CrossRefGoogle Scholar
  10. 10.
    Amano F, Yasumoto T, Prieto-Mahaney OO et al (2009) Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(IV) oxide. Chem Commun.  https://doi.org/10.1039/b822634b CrossRefGoogle Scholar
  11. 11.
    Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762.  https://doi.org/10.1021/ac60125a006 CrossRefGoogle Scholar
  12. 12.
    Yoshida H, Hirao K, Nishimoto JI et al (2008) Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts. J Phys Chem C 112:5542–5551.  https://doi.org/10.1021/jp077314u CrossRefGoogle Scholar
  13. 13.
    Shimura K, Kato S, Yoshida T et al (2010) Photocatalytic steam reforming of methane over sodium tantalate. J Phys Chem C 114:3493–3503.  https://doi.org/10.1021/jp902761x CrossRefGoogle Scholar
  14. 14.
    Yuzawa H, Mori T, Itoh H, Yoshida H (2012) Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst. J Phys Chem C 116:4126–4136.  https://doi.org/10.1021/jp209795t CrossRefGoogle Scholar
  15. 15.
    Yuzawa H, Yoshida H (2013) Direct functionalization of aromatic rings on platinum-loaded titanium oxide photocatalyst. Chem Lett 42:1336–1343.  https://doi.org/10.1246/cl.130757 CrossRefGoogle Scholar
  16. 16.
    Yamamoto A, Mizuba S, Saeki Y, Yoshida H (2016) Platinum loaded sodium tantalate photocatalysts prepared by a flux method for photocatalytic steam reforming of methane. Appl Catal A 521:125–132.  https://doi.org/10.1016/j.apcata.2015.10.031 CrossRefGoogle Scholar
  17. 17.
    Tyagi A, Yamamoto A, Yamamoto M et al (2018) Direct cross-coupling between alkenes and tetrahydrofuran with a platinum-loaded titanium oxide photocatalyst. Catal Sci Technol 8:2546–2556.  https://doi.org/10.1039/c8cy00129d CrossRefGoogle Scholar
  18. 18.
    Yoshida H, Yamada R, Yoshida T (2019) Platinum cocatalyst loaded on calcium titanate photocatalyst for water splitting in a flow of water vapor. Chemsuschem 12:1958–1965.  https://doi.org/10.1002/cssc.201802799 CrossRefPubMedGoogle Scholar
  19. 19.
    An C, Wang R, Wang S, Zhang X (2011) Converting AgCl nanocubes to sunlight-driven plasmonic AgCl: Ag nanophotocatalyst with high activity and durability. J Mater Chem 21:11532–11536.  https://doi.org/10.1039/c1jm10244c CrossRefGoogle Scholar
  20. 20.
    Yuzawa H, Yoshida T, Yoshida H (2012) Gold nanoparticles on titanium oxide effective for photocatalytic hydrogen formation under visible light. Appl Catal B 115–116:294–302.  https://doi.org/10.1016/j.apcatb.2011.12.029 CrossRefGoogle Scholar
  21. 21.
    Liu H, Meng X, Dao TD et al (2015) Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew Chem Int Ed 54:11545–11549.  https://doi.org/10.1002/anie.201504933 CrossRefGoogle Scholar
  22. 22.
    Zhang Q, Mao M, Li Y et al (2018) Novel photoactivation promoted light-driven CO2 reduction by CH4 on Ni/CeO2 nanocomposite with high light-to-fuel efficiency and enhanced stability. Appl Catal B 239:555–564.  https://doi.org/10.1016/j.apcatb.2018.08.052 CrossRefGoogle Scholar
  23. 23.
    Takami D, Ito Y, Kawaharasaki S et al (2019) Low temperature dry reforming of methane over plasmonic Ni photocatalysts under visible light irradiation. Sustain Energy Fuels 2:2–5.  https://doi.org/10.1039/c9se00206e CrossRefGoogle Scholar
  24. 24.
    Yoshida H, Fujimura Y, Yuzawa H et al (2013) A heterogeneous palladium catalyst hybridised with a titanium dioxide photocatalyst for direct C-C bond formation between an aromatic ring and acetonitrile. Chem Commun 49:3793–3795.  https://doi.org/10.1039/c3cc41068d CrossRefGoogle Scholar
  25. 25.
    Tyagi A, Matsumoto T, Kato T, Yoshida H (2016) Direct C-H bond activation of ethers and successive C-C bond formation with benzene by a bifunctional palladium-titania photocatalyst. Catal Sci Technol 6:4577–4583.  https://doi.org/10.1039/c5cy02290h CrossRefGoogle Scholar
  26. 26.
    Wada E, Takeuchi T, Fujimura Y et al (2017) Direct cyanomethylation of aliphatic and aromatic hydrocarbons with acetonitrile over a metal loaded titanium oxide photocatalyst. Catal Sci Technol 7:2457–2466.  https://doi.org/10.1039/c7cy00365j CrossRefGoogle Scholar
  27. 27.
    Tyagi A, Yamamoto A, Kato T, Yoshida H (2017) Bifunctional property of Pt nanoparticles deposited on TiO2 for the photocatalytic sp3C-sp3C cross-coupling reactions between THF and alkanes. Catal Sci Technol 7:2616–2623.  https://doi.org/10.1039/c7cy00535k CrossRefGoogle Scholar
  28. 28.
    Xie S, Wang Y, Zhang Q et al (2014) MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal 4:3644–3653.  https://doi.org/10.1021/cs500648p CrossRefGoogle Scholar
  29. 29.
    Hou W, Hung WH, Pavaskar P et al (2011) Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal 1:929–936.  https://doi.org/10.1021/cs2001434 CrossRefGoogle Scholar
  30. 30.
    Ambrožová N, Reli M, Šihor M et al (2018) Copper and platinum doped titania for photocatalytic reduction of carbon dioxide. Appl Surf Sci 430:475–487.  https://doi.org/10.1016/j.apsusc.2017.06.307 CrossRefGoogle Scholar
  31. 31.
    Iizuka K, Wato T, Miseki Y et al (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc 15:20863–20868.  https://doi.org/10.1021/ja207586e CrossRefGoogle Scholar
  32. 32.
    Takayama T, Tanabe K, Saito K et al (2014) The KCaSrTa5O15 photocatalyst with tungsten bronze structure for water splitting and CO2 reduction. Phys Chem Chem Phys 16:24417–24422.  https://doi.org/10.1039/c4cp03892d CrossRefPubMedGoogle Scholar
  33. 33.
    Yamamoto M, Yoshida T, Yamamoto N et al (2015) Photocatalytic reduction of CO2 with water promoted by Ag clusters in Ag/Ga2O3 photocatalysts. J Mater Chem A 3:16810–16816.  https://doi.org/10.1039/C5TA04815J CrossRefGoogle Scholar
  34. 34.
    Pang R, Teramura K, Tatsumi H et al (2018) Modification of Ga2O3 by an Ag-Cr core-shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O. Chem Commun 54:1053–1056.  https://doi.org/10.1039/c7cc07800e CrossRefGoogle Scholar
  35. 35.
    Xie S, Wang Y, Zhang Q et al (2015) SrNb2O6 nanoplates as efficient photocatalysts for the preferential reduction of CO2 in the presence of H2O. Chem Commun 51:3430–3433.  https://doi.org/10.1039/c4cc10241j CrossRefGoogle Scholar
  36. 36.
    Yoshida H, Zhang L, Sato M et al (2015) Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water. Catal Today 251:132–139.  https://doi.org/10.1016/j.cattod.2014.10.039 CrossRefGoogle Scholar
  37. 37.
    Anzai A, Fukuo N, Yamamoto A, Yoshida H (2017) Highly selective photocatalytic reduction of carbon dioxide with water over silver-loaded calcium titanate. Catal Commun 100:134–138.  https://doi.org/10.1016/j.catcom.2017.06.046 CrossRefGoogle Scholar
  38. 38.
    Zhu X, Anzai A, Yamamoto A, Yoshida H (2019) Silver-loaded sodium titanate photocatalysts for selective reduction of carbon dioxide to carbon monoxide with water. Appl Catal B 243:47–56.  https://doi.org/10.1016/j.apcatb.2018.10.021 CrossRefGoogle Scholar
  39. 39.
    Yoshida H, Sato M, Fukuo N et al (2018) Sodium hexatitanate photocatalysts prepared by a flux method for reduction of carbon dioxide with water. Catal Today 303:296–304.  https://doi.org/10.1016/j.cattod.2017.09.029 CrossRefGoogle Scholar
  40. 40.
    Yu B, Zhou Y, Li P et al (2016) Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 8:11870–11874.  https://doi.org/10.1039/c6nr02547a CrossRefPubMedGoogle Scholar
  41. 41.
    Liu E, Kang L, Wu F et al (2014) Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance. Plasmonics 9:61–70.  https://doi.org/10.1007/s11468-013-9598-7 CrossRefGoogle Scholar
  42. 42.
    Cheng X, Dong P, Huang Z et al (2017) Green synthesis of plasmonic Ag nanoparticles anchored TiO2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2. J CO2 Util 20:200–207.  https://doi.org/10.1016/j.jcou.2017.04.009 CrossRefGoogle Scholar
  43. 43.
    Li X, Zhuang Z, Li W, Pan H (2012) Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl Catal A 429–430:31–38.  https://doi.org/10.1016/j.apcata.2012.04.001 CrossRefGoogle Scholar
  44. 44.
    Xu F, Meng K, Cheng B et al (2019) Enhanced photocatalytic activity and selectivity for CO2 reduction over a TiO2 nanofibre mat using Ag and MgO as bi-cocatalyst. ChemCatChem 11:465–472.  https://doi.org/10.1002/cctc.201801282 CrossRefGoogle Scholar
  45. 45.
    Low J, Qiu S, Xu D et al (2018) Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl Surf Sci 434:423–432.  https://doi.org/10.1016/j.apsusc.2017.10.194 CrossRefGoogle Scholar
  46. 46.
    Feng S, Wang M, Zhou Y et al (2015) Double-shelled plasmonic Ag-TiO2 hollow spheres toward visible light-active photocatalytic conversion of CO2 into solar fuel. APL Mater 3:104416.  https://doi.org/10.1063/1.4930043 CrossRefGoogle Scholar
  47. 47.
    Hoflund GB, Weaver JF, Epling WS (2002) Ag foil by XPS. Surf Sci Spectra 3:151–156.  https://doi.org/10.1116/1.1247777 CrossRefGoogle Scholar
  48. 48.
    Hoflund GB, Weaver JF, Epling WS (2002) Ag2O XPS spectra. Surf Sci Spectra 3:157–162.  https://doi.org/10.1116/1.1247778 CrossRefGoogle Scholar
  49. 49.
    Hoflund GB, Hazos ZF, Salaita GN (2000) Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys Rev B 62:11126–11133.  https://doi.org/10.1103/PhysRevB.62.11126 CrossRefGoogle Scholar
  50. 50.
    White JL, Baruch MF, Pander JE et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115:12888–12935.  https://doi.org/10.1021/acs.chemrev.5b00370 CrossRefPubMedGoogle Scholar
  51. 51.
    Nahar S, Zain MFM, Kadhum AAH et al (2017) Advances in photocatalytic CO2 reduction with water: a review. Materials (Basel) 10:629.  https://doi.org/10.3390/ma10060629 CrossRefGoogle Scholar
  52. 52.
    Méndez-Medrano MG, Kowalska E, Lehoux A et al (2016) Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J Phys Chem C 120:5143–5154.  https://doi.org/10.1021/acs.jpcc.5b10703 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical and Petrochemicals Engineering DepartmentEgypt-Japan University of Science and TechnologyNew Borg El-Arab City, AlexandriaEgypt
  2. 2.Chemical Engineering Department, Faculty of EngineeringPort Said UniversityPort SaidEgypt
  3. 3.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
  4. 4.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto UniversityKyotoJapan

Personalised recommendations