A Novel Spherical Boron Phosphide as a High-Efficiency Overall Water Splitting Catalyst: A Density Functional Theory Study

  • Yang Wang
  • Wanqi Gong
  • Pengjian ZuoEmail author
  • Lihua KangEmail author
  • Geping Yin


We built a novel boron phosphide isomer with spherical structure firstly. This boron phosphide isomer is a highly symmetrical perfect dodecahedron composed of 8 boron atoms and 12 phosphorus atoms, in which each five-membered ring containing two boron atoms and three phosphorus atoms. We also investigated its structural characterizations including characteristic peaks and their corresponding vibration modes by simulating the IR, Raman and NMR spectrum. It is found that the novel boron phosphide isomer has a high activity for water molecule splitting. This unique B–P bridge structure can adsorb one water molecule and break its strong O–H chemical bond. The whole reaction of overall water splitting consists of five transition states and four intermediates, and the breaking of O–H bond with the activation energy of 2.92 eV is the rate-controlling step. The B8P12 molecular holds the stable spherical structure during the whole water splitting process.

Graphic Abstract


Spherical boron phosphide Novel isomer Water splitting DFT Reaction mechanism 



Thanks for financially supported by the National Natural Science Foundation of China (No. 51772068).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2996_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 30 kb)


  1. 1.
    Nocera DG (2012) Acc Chem Res 45:767–776PubMedCrossRefGoogle Scholar
  2. 2.
    Crabtree GW, Dresselhaus MS, Buchanan MV (2004) Phys Today 57:39–44CrossRefGoogle Scholar
  3. 3.
    Kibsgaard J, Jaramillo TF (2014) Angew Chem Int Ed 53:14433–14437CrossRefGoogle Scholar
  4. 4.
    Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503–6570PubMedCrossRefGoogle Scholar
  5. 5.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zheng Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Angew Chem Int Ed 54:52–65CrossRefGoogle Scholar
  7. 7.
    Gray HB (2009) Nat Chem 1:7PubMedCrossRefGoogle Scholar
  8. 8.
    Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) J Am Chem Soc 135:9267–9270PubMedCrossRefGoogle Scholar
  9. 9.
    Wang X, Kolen’ko YV, Bao XQ, Kovnir K, Liu L (2015) Angew Chem Int Ed Engl 54:8188–8192PubMedCrossRefGoogle Scholar
  10. 10.
    Wang X, Li W, Xiong D, Petrovykh DY, Liu L (2016) Adv Funct Mater 26:4067–4077CrossRefGoogle Scholar
  11. 11.
    Wexler RB, Martirez JMP, Rappe AM (2017) ACS Catal 7:7718–7725CrossRefGoogle Scholar
  12. 12.
    Xu J, Wei X-K, Costa JD, Lado JL, Owens-Baird B, Gonçalves LP, Fernandes SP, Heggen M, Petrovykh DY, Dunin-Borkowski RE (2017) ACS Catal 7:5450–5455CrossRefGoogle Scholar
  13. 13.
    Du C, Yang L, Yang F, Cheng G, Luo W (2017) ACS Catal 7:4131–4137CrossRefGoogle Scholar
  14. 14.
    Xu Y, Tu W, Zhang B, Yin S, Huang Y, Kraft M, Xu R (2017) Adv Mater 29:1605957CrossRefGoogle Scholar
  15. 15.
    Tang C, Zhang R, Lu W, Wang Z, Liu D, Hao S, Du G, Asiri AM, Sun X (2017) Angew Chem 129:860–864CrossRefGoogle Scholar
  16. 16.
    Xu J, Sousa JP, Mordvinova NE, Costa JD, Petrovykh DY, Kovnir K, Lebedev OI, Kolen’ko YV (2018) ACS Catal 8:2595–2600CrossRefGoogle Scholar
  17. 17.
    Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA III, Chen S, Ren Z (2018) Nat Commun 9:2551PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014) Angew Chem Int Ed Engl 53:6710–6714PubMedCrossRefGoogle Scholar
  19. 19.
    Tian J, Cheng N, Liu Q, Xing W, Sun X (2015) Angew Chem Int Ed Engl 54:5493–5497PubMedCrossRefGoogle Scholar
  20. 20.
    Yang F, Chen Y, Cheng G, Chen S, Luo W (2017) ACS Catal 7:3824–3831CrossRefGoogle Scholar
  21. 21.
    Wang H, Min S, Wang Q, Li D, Casillas G, Ma C, Li Y, Liu Z, Li LJ, Yuan J, Antonietti M, Wu T (2017) ACS Nano 11:4358–4364PubMedCrossRefGoogle Scholar
  22. 22.
    He P, Yu XY, Lou XWD (2017) Angew Chem 129:3955–3958CrossRefGoogle Scholar
  23. 23.
    Hou Y, Qiu M, Zhang T, Zhuang X, Kim CS, Yuan C, Feng X (2017) Adv Mater 29:1701589CrossRefGoogle Scholar
  24. 24.
    Pramanik M, Tominaka S, Wang ZL, Takei T, Yamauchi Y (2017) Angew Chem Int Ed Engl 56:13508–13512PubMedCrossRefGoogle Scholar
  25. 25.
    Li H, Li Q, Wen P, Williams TB, Adhikari S, Dun C, Lu C, Itanze D, Jiang L, Carroll DL, Donati GL, Lundin PM, Qiu Y, Geyer SM (2018) Adv Mater 30:1705796CrossRefGoogle Scholar
  26. 26.
    Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong WC, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) J Am Chem Soc 140:2610–2618PubMedCrossRefGoogle Scholar
  27. 27.
    Chung DY, Jun SW, Yoon G, Kim H, Yoo JM, Lee KS, Kim T, Shin H, Sinha AK, Kwon SG, Kang K, Hyeon T, Sung YE (2017) J Am Chem Soc 139:6669–6674PubMedCrossRefGoogle Scholar
  28. 28.
    Li X, Liu W, Zhang M, Zhong Y, Weng Z, Mi Y, Zhou Y, Li M, Cha JJ, Tang Z, Jiang H, Li X, Wang H (2017) Nano Lett 17:2057–2063PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang X, Yu X, Zhang L, Zhou F, Liang Y, Wang R (2018) Adv Funct Mater 28:1706523CrossRefGoogle Scholar
  30. 30.
    Wang R, Dong XY, Du J, Zhao JY, Zang SQ (2018) Adv Mater 30:1703711CrossRefGoogle Scholar
  31. 31.
    Duan H, Li D, Tang Y, He Y, Ji S, Wang R, Lv H, Lopes PP, Paulikas AP, Li H, Mao SX, Wang C, Markovic NM, Li J, Stamenkovic VR, Li Y (2017) J Am Chem Soc 139:5494–5502PubMedCrossRefGoogle Scholar
  32. 32.
    Zou X, Zhang Y (2015) Chem Soc Rev 44:5148–5180PubMedCrossRefGoogle Scholar
  33. 33.
    Popper P, Ingles T (1957) Nature 179:1075CrossRefGoogle Scholar
  34. 34.
    Vickery R (1959) Nature 184:268CrossRefGoogle Scholar
  35. 35.
    Williams FV, Ruehrwein RA (1960) J Am Chem Soc 82:1330–1332CrossRefGoogle Scholar
  36. 36.
    Peret JL (1964) J Am Ceram Soc 47:44–46CrossRefGoogle Scholar
  37. 37.
    Dong J, Li H, Li L (2013) NPG Asia Mater 5:e56CrossRefGoogle Scholar
  38. 38.
    Li G, Abbott JK, Brasfield JD, Liu P, Dale A, Duscher G, Rack PD, Feigerle CS (2015) Appl Surf Sci 327:7–12CrossRefGoogle Scholar
  39. 39.
    Medvedev V, Yakshin A, van de Kruijs RWE, Bijkerk F (2015) Opt Mater Express 5:1450–1459CrossRefGoogle Scholar
  40. 40.
    Zhang X, Qin J, Liu H, Zhang S, Ma M, Luo W, Liu R, Ahuja R (2015) Sci Rep 5:8761PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mukhanov VA, Vrel D, Sokolov PS, Le Godec Y, Solozhenko VL (2016) Dalton Trans 45:10122–10126PubMedCrossRefGoogle Scholar
  42. 42.
    Shi L, Li P, Zhou W, Wang T, Chang K, Zhang H, Kako T, Liu G, Ye J (2016) Nano Energy 28:158–163CrossRefGoogle Scholar
  43. 43.
    Huber S, Medvedev V, Meyer-Ilse J, Gullikson E, Padavala B, Edgar J, Sturm JM, van de Kruijs RWE, Prendergast D, Bijkerk F (2016) Opt Mater Express 6:3946–3959CrossRefGoogle Scholar
  44. 44.
    Varley JB, Miglio A, Ha V-A, van Setten MJ, Rignanese G-M, Hautier G (2017) Chem Mater 29:2568–2573CrossRefGoogle Scholar
  45. 45.
    Jiang H, Shyy W, Liu M, Wei L, Wu M, Zhao T (2017) J Mater Chem A 5:672–679CrossRefGoogle Scholar
  46. 46.
    Kang JS, Wu H, Hu Y (2017) Nano Lett 17:7507–7514PubMedCrossRefGoogle Scholar
  47. 47.
    Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Phys Rev B 80:155453CrossRefGoogle Scholar
  48. 48.
    Wu M, Zhang Z, Zeng XC (2010) Appl Phys Lett 97:093109CrossRefGoogle Scholar
  49. 49.
    Çakır D, Kecik D, Sahin H, Durgun E, Peeters FM (2015) PCCP 17:13013–13020PubMedCrossRefGoogle Scholar
  50. 50.
    Zhu Z, Cai X, Niu C, Wang C, Jia Y (2016) Appl Phys Lett 109:153107CrossRefGoogle Scholar
  51. 51.
    Zeng B, Li M, Zhang X, Yi Y, Fu L, Long M (2016) J Phys Chem C 120:25037–25042CrossRefGoogle Scholar
  52. 52.
    Chen X, Tan C, Yang Q, Meng R, Liang Q, Jiang J, Sun X, Yang D, Ren T (2016) PCCP 18:16229–16236PubMedCrossRefGoogle Scholar
  53. 53.
    Wang H, Li X, Sun J, Liu Z, Yang J (2017) 2D Mater 4:045020CrossRefGoogle Scholar
  54. 54.
    Huber SP, Medvedev VV, Gullikson E, Padavala B, Edgar JH, van de Kruijs RW, Bijkerk F, Prendergast D (2017) Phys Chem Chem Phys 19:8174–8187PubMedCrossRefGoogle Scholar
  55. 55.
    Liu S, Liu B, Shi X, Lv J, Niu S, Yao M, Li Q, Liu R, Cui T, Liu B (2017) Sci Rep 7:2404PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cheng Y, Meng R, Tan C, Chen X, Xiao J (2018) Appl Surf Sci 427:176–188CrossRefGoogle Scholar
  57. 57.
    Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Nat Chem 6:727–731PubMedCrossRefGoogle Scholar
  58. 58.
    Bai H, Bai B, Zhang L, Huang W, Mu YW, Zhai HJ, Li SD (2016) Sci Rep 6:35518PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Liu M, Artyukhov VI, Yakobson BI (2017) J Am Chem Soc 139:2111–2117PubMedCrossRefGoogle Scholar
  60. 60.
    Liu X, Zhang Z, Wang L, Yakobson BI, Hersam MC (2018) Nat Mater 17:783–788PubMedCrossRefGoogle Scholar
  61. 61.
    Ji X, Kong N, Wang J, Li W, Xiao Y, Gan ST, Zhang Y, Li Y, Song X, Xiong Q, Shi S, Li Z, Tao W, Zhang H, Mei L, Shi J (2018) Adv Mater 30:e1803031CrossRefGoogle Scholar
  62. 62.
    Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  63. 63.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  64. 64.
    Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941PubMedCrossRefGoogle Scholar
  65. 65.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  66. 66.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  67. 67.
    Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2001) J Chem Phys 115:10291CrossRefGoogle Scholar
  68. 68.
    Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002) J Chem Phys 117:8694–8704CrossRefGoogle Scholar
  69. 69.
    Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ (2001) J Chem Phys 114:9758–9763CrossRefGoogle Scholar
  70. 70.
    Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Muller KR (2017) Nat Commun 8:872PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104PubMedCrossRefGoogle Scholar
  72. 72.
    Jin Y, Tian Y, Kuang X, Zhang C, Lu C, Wang J, Lv J, Ding L, Ju M (2015) J Phys Chem A 119:6738–6745PubMedCrossRefGoogle Scholar
  73. 73.
    Gu X, Ji M, Wei SH, Gong XG (2004) Phys Rev B 70:205401CrossRefGoogle Scholar
  74. 74.
    Tomanek D, Schluter MA (1991) Phys Rev Lett 67:2331–2334PubMedCrossRefGoogle Scholar
  75. 75.
    Liu B, Lu ZY, Pan B, Wang CZ, Ho KM, Shvartsburg AA, Jarrold MF (1998) J Chem Phys 109:9401–9409CrossRefGoogle Scholar
  76. 76.
    von Helden G, Kemper PR, Gotts NG, Bowers MT (1993) Science 259:1300–1302CrossRefGoogle Scholar
  77. 77.
    Mitas L, Grossman JC, Stich I, Tobik J (2000) Phys Rev Lett 87:1479–1482CrossRefGoogle Scholar
  78. 78.
    Zhu XL, Zeng XC, Lei YA, Pan B (2004) J Chem Phys 120:8985–8995PubMedCrossRefGoogle Scholar
  79. 79.
    von Helden G, Hsu MT, Kemper PR, Bowers MT (1991) J Chem Phys 95:3835–3837CrossRefGoogle Scholar
  80. 80.
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Chem Soc Rev 44:2060–2086PubMedCrossRefGoogle Scholar
  81. 81.
    Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger H (2014) Energy Environ Sci 7:2255–2260CrossRefGoogle Scholar
  82. 82.
    Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Science 334:1256–1260PubMedCrossRefGoogle Scholar
  83. 83.
    Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Jaroniec M, Qiao S-Z (2016) J Am Chem Soc 138:16174–16181PubMedCrossRefGoogle Scholar
  84. 84.
    Wang P, Zhang X, Zhang J, Wan S, Guo S, Lu G, Yao J, Huang X (2017) Nat Commun 8:14580PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrochemistry, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.College of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi UniversityShiheziPeople’s Republic of China

Personalised recommendations