Advertisement

Study on the Structure of Cu/ZrO2 Catalyst and the Formation Mechanism of Disodium Iminodiacetate and Sodium Glycine

  • Yongsheng Wang
  • Hongwen Zhu
  • Zhengkang DuanEmail author
  • Zhenzhen Zhao
  • Yunlu Zhao
  • Xiaolin Lan
  • Li Chen
  • Dongjie Guo
Article
  • 18 Downloads

Abstract

A new method to prepare Cu/ZrO2 catalysts by reducing CuO/ZrO2 with hydrazine hydrate is reported, and the prepared catalysts were used to synthesize disodium iminodiacetate by diethanolamine dehydrogenation. Hydrazine hydrate can rapidly reduce the CuO/ZrO2 precursor powder in an alkaline environment at a moderate temperature. The ratio of Cu0/Cu+ at the Cu/ZrO2 surface was controlled by the amount of hydrazine hydrate and the reduction reaction time. The formation mechanism of disodium glycine as the main byproduct and iminodiacetate were deduced by investigating the product yield, the reaction time, and the presence of acetaldehyde in the evolved gas. It has been shown that the ratio of Cu0/Cu+ in Cu/ZrO2 significantly affects the dehydrogenation of diethanolamine into disodium iminodiacetate. Cu0 and Cu+ are the catalytic activity centers in the dehydrogenation of diethanolamine which respectively produce intermediate aldehydes and an ester via nucleophilic addition reactions. The formation mechanism of sodium glycinate is related to the tautomerism of intermediate products and Schiff base hydrolysis.

Graphic Abstract

The formation mechanism of disodium iminodiacetate and sodium glycine producing by the dehydrogenation of diethanolamine over the Cu/ZrO2 catalysts which were prepared by a new reduction method.

Keywords

Copper-zirconium catalysts Diethanolamine Disodium iminodiacetate Reaction mechanism Hydrazine hydrate 

Notes

Acknowledgements

Support from the National Natural Science Foundation of China (Grant No. NSFC 21576229) is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10562_2019_2989_MOESM1_ESM.docx (17 kb)
Electronic supplementary material 1 (DOCX 17 kb)

References

  1. 1.
    Alibhai MF, Stallings WC (2001) Proc Natl Acad Sci USA 98:2944–2946PubMedCrossRefGoogle Scholar
  2. 2.
    Chen D, Li J, Li GR, Chen BH, Yin FX (2013) Chem Ind Eng Prog 32:1635–1640Google Scholar
  3. 3.
    Andreev DV, Sergeev EE, Gribovskii AG, Makarshin LL, Prikhod’ko SA, Adonin NY, Pai ZP, Parmon VN (2017) Chem Eng J 330:899–905CrossRefGoogle Scholar
  4. 4.
    Zheng XJ, Yang GW, Xu XX, Yang G (2001) Fine Chem 18:608–610Google Scholar
  5. 5.
    Wang Y, Zhao Y, Zhao Z, Lan X, Xu J, Xu W, Duan Z (2019) Acta Chim Sin 71:661–668CrossRefGoogle Scholar
  6. 6.
    Hickman DA, Mosner K, Ringer JW (2015) Chem Eng J 278:447–453CrossRefGoogle Scholar
  7. 7.
    Andreev DV, Gribovskii AG, Makarshin LL, Adonin NY, Prikhod’ko SA, Pai ZP, Parmon VN (2013) Catal Ind 5:1–8CrossRefGoogle Scholar
  8. 8.
    Yang AS, Pan YF, Sun Q, Cheng R, Zheng YP, Xu GM (2010) J Chem Eng Chin Univ 4:590–595Google Scholar
  9. 9.
    Lu Z, Gao D, Yin H, Wang A, Liu S (2015) J Ind Eng Chem 31:301–308CrossRefGoogle Scholar
  10. 10.
    Nagaiah P, Venkat Rao M, Thirupathaiah K, Venkateshwarlu V, David Raju B, Rama Rao KS (2018) Res Chem Intermed 44:5817–5831CrossRefGoogle Scholar
  11. 11.
    Yin H, Yin H, Wang A, Shen L, Liu Y, Zheng Y (2017) J Nanosci Nanotechnol 17:1255–1266PubMedCrossRefGoogle Scholar
  12. 12.
    Sun D, Misu T, Yamada Y, Sato S (2019) Appl Catal A.  https://doi.org/10.1016/j.apcata.2019.06.007 CrossRefGoogle Scholar
  13. 13.
    Ohira M, Liu H, He D, Hirata Y, Sano M, Suzuki T, Miyake T (2018) J Jpn Petrol Inst 61:205–212CrossRefGoogle Scholar
  14. 14.
    Gao D, Yin H, Wang A, Shen L, Liu S (2015) J Ind Eng Chem 26:322–332CrossRefGoogle Scholar
  15. 15.
    Wang LX, Zhu WC, Zheng DF, Yu X, Cui J, Jia MJ, Zhang WX, Wang ZL (2010) React Kinet Mech Catal 101:365–375CrossRefGoogle Scholar
  16. 16.
    Inui K, Kurabayashi T, Sato S (2002) J Catal 212:207–215CrossRefGoogle Scholar
  17. 17.
    Inui K, Kurabayashi T, Sato S (2002) Appl Catal A 237:53–61CrossRefGoogle Scholar
  18. 18.
    Ro I, Liu YF, Ball MR, Jackson DHK, Chada JP, Sener C, Kuech TF, Madon RJ, Huber GW, Dumesic JA (2016) ACS Catalysis 6:7040–7050CrossRefGoogle Scholar
  19. 19.
    Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG (2011) J Mol Catal A 334:29–34CrossRefGoogle Scholar
  20. 20.
    Sato AG, Volanti DP, Freitas IC, Longo El, Bueno JC (2012) Catal Commun 26:122–126CrossRefGoogle Scholar
  21. 21.
    Bai GY, Wang YL, Li F, Zhao Z, Chen GF, Li N, Han X (2012) Catal Lett 143:101–107CrossRefGoogle Scholar
  22. 22.
    Freitas IC, Damyanova S, Oliveira DC, Marques CMP, Bueno JMC (2014) J Mol Catal A 381:26–37CrossRefGoogle Scholar
  23. 23.
    Chen CQ, Ruan CX, Zhan YY, Lin XY, Zheng Q, Wei KM (2014) Int J Hydrogen Energy 39:317–324CrossRefGoogle Scholar
  24. 24.
    Ji DH, Zhu WC, Wang ZL, Wang GJ (2007) Catal Commun 8:1891–1895CrossRefGoogle Scholar
  25. 25.
    Hu Q, Fan GL, Yan L, Cao XZ, Zhang P, Wang BY, Li F (2016) Green Chem 18:2317–2322CrossRefGoogle Scholar
  26. 26.
    Shi QJ, Liu N, Liang Y (2007) Chin J Catal 28:57–61CrossRefGoogle Scholar
  27. 27.
    Komandur VR, Guggilla VS, Chakravarthula SS, Vattikonda VR (2007) J Phys Chem B 11:543–550Google Scholar
  28. 28.
    Kim S (1974) J Electron Spectrosc Relat Phenom 3:217–226CrossRefGoogle Scholar
  29. 29.
    Severino F, Brito JL, Laine J, Fierro JL, L´opez Agudo A (1998) J Catal 177:82–95CrossRefGoogle Scholar
  30. 30.
    Acharyya SS, Ghosh S, Bal R (2014) ACS Sustain Chem Eng 2:584–589CrossRefGoogle Scholar
  31. 31.
    Maiti S, Llorca J, Dominguez M, Colussi S, Trovarelli A, Priolkar KR, Aquilanti G, Gayen A (2016) J Power Sources 304:319–331CrossRefGoogle Scholar
  32. 32.
    Unnikrishnan P, Srinivas D (2012) Ind Eng Chem Res 51:6356–6363CrossRefGoogle Scholar
  33. 33.
    Hu Q, Yang L, Fan GL, Li F (2016) Chem Nano Mat 2:888–896Google Scholar
  34. 34.
    Wang J, Lei Z, Qin H, Zhang L, Li F (2011) Ind Eng Chem Res 50:7120–7128CrossRefGoogle Scholar
  35. 35.
    Yang YC, Duan ZK, Liu WY, Li GL, Xiong Y (2001) Chem React Eng Technol 17:210–215Google Scholar
  36. 36.
    Balaraman E, Khaskin E, Leitus G, Milstein D (2013) Nat Chem 5:122–125PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang M, Zhao YJ, Liu Q, Yang L, Fan GL, Li F (2016) Dalton Trans 45:1093–1102PubMedCrossRefGoogle Scholar
  38. 38.
    Wang ZY, Liu XY, Rooney DW, Hu P (2015) Surf Sci 640:181–189CrossRefGoogle Scholar
  39. 39.
    Takeshita K, Nakamura S, Kawamoto K (1978) Bull Chem Soc Jpn 51:2622–2627CrossRefGoogle Scholar
  40. 40.
    Neurock M, Tao ZY, Chemburkar A, Hibbitts DD, Iglesia E (2017) Faraday Discuss 197:59–86PubMedCrossRefGoogle Scholar
  41. 41.
    Manrı́quez ME, López T, Gómez R, Navarrete J (2004) J Mol Catal A 220:229–237CrossRefGoogle Scholar
  42. 42.
    Jiang ZW, Zhang ZR, Song JL, Meng QL, Zhou HC, He ZH, Han BX (2016) ACS Sustain Chem Eng 4:305–311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yongsheng Wang
    • 1
    • 2
  • Hongwen Zhu
    • 1
  • Zhengkang Duan
    • 1
    • 2
    Email author
  • Zhenzhen Zhao
    • 1
    • 2
  • Yunlu Zhao
    • 1
    • 2
  • Xiaolin Lan
    • 1
  • Li Chen
    • 1
  • Dongjie Guo
    • 1
  1. 1.College of Chemical EngineeringXiangtan UniversityXiangtanChina
  2. 2.Hunan Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource UtilizationXiangtanChina

Personalised recommendations