Advertisement

Can Immobilization of an Inactive Iron Species Switch on Catalytic Activity in the Suzuki Reaction?

  • Sanita B. Tailor
  • Robin B. BedfordEmail author
Article
  • 53 Downloads

Abstract

We examined the synthetic and catalytic claims that immobilization of an Fe-PNP pincer complex (1) on an amine-modified graphene oxide support yields a useful heterogeneous catalyst for the Suzuki biaryl cross-coupling reaction. Complex 1 is not formed under the reported conditions, rather the iron sulfate heptahydrate starting material (melanterite) undergoes partial dehydration to give iron sulfate tetrahydrate (rozenite). Neither rozenite nor melanterite are catalytically competent.

Graphic Abstract

Keywords

Heterogeneous catalysis Homogeneous catalysis Mainly organic chemicals and reactions 

Notes

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC) for provision of a PhD studentship (S.B.T.).

References

  1. 1.
    Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483CrossRefGoogle Scholar
  2. 2.
    Valente C, Organ MG (2011) In: Hall DG (ed) Boronic acids. Wiley-VCH, Weinheim, pp 213–262CrossRefGoogle Scholar
  3. 3.
    Garrett CE, Prasad K (2004) The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd- catalyzed reactions. Adv Synth Catal 346:889–900CrossRefGoogle Scholar
  4. 4.
    Guideline on the Specification Limits for Residues of Metal Catalysts or Metal Reagents, (Doc.Ref. EMEA/CHMP/SWP/4446/2000). Committee for Medicinal Products for Human Use (CHMP); European Medicines Agency: London, Feb 2008; pp 1–34Google Scholar
  5. 5.
    Neely JM, Bezdek MJ, Chirik PJ (2016) Insight into transmetalation enables cobalt-catalyzed Suzuki–Miyaura cross coupling. ACS Cent Sci 2:935–942CrossRefGoogle Scholar
  6. 6.
    Asghar S, Tailor SB, Elorriaga D, Bedford RB (2017) Cobalt-catalyzed Suzuki biaryl coupling of aryl halides. Angew Chem Int Ed 56:16367–16370CrossRefGoogle Scholar
  7. 7.
    Duong HA, Wu W, Teo Y-Y (2017) Cobalt-catalyzed cross- coupling reactions of arylboronic esters and aryl halides. Organometallics 36:4363–4366CrossRefGoogle Scholar
  8. 8.
    Tailor SB, Manzotti M, Asghar S, Rowsell BJS, Luckham SLJ, Sparkes HA, Bedford RB (2019) Revisiting claims of the iron-, cobalt-, nickel-, and copper-catalyzed suzuki biaryl cross-coupling of aryl halides with aryl boronic acids. Organometallics 38:1770–1777CrossRefGoogle Scholar
  9. 9.
    Bedford RB, Hall MA, Hodges GR, Huwe M, Wilkinson MC (2009) Simple mixed Fe–Zn catalysts for the Suzuki couplings of tetraarylborates with benzyl halides and 2-halopyridines. Chem Commun 42:6430–6432CrossRefGoogle Scholar
  10. 10.
    Bedford RB, Gallagher T, Pye DR, Savage W (2015) Towards iron-catalysed Suzuki Biaryl cross-coupling: unusual reactivity of 2-halobenzyl halides. Synthesis 47:1761–1765CrossRefGoogle Scholar
  11. 11.
    O’Brien HM, Manzotti M, Abrams RD, Elorriaga D, Sparkes HA, Davis SA, Bedford RB (2018) Iron-catalysed substrate- directed Suzuki biaryl cross-coupling. Nat Catal 1:429–437CrossRefGoogle Scholar
  12. 12.
    Kylmälä T, Valkonen A, Rissanen K, Xu Y, Franzén R (2009) Retraction notice to “trans-Tetrakis(pyridine)dichloroiron(II) as catalyst for Suzuki cross-coupling in ethanol and water”. Tetrahedron Lett 50:5692CrossRefGoogle Scholar
  13. 13.
    Bézier D, Darcel C (2009) Retraction: iron-catalyzed Suzuki-Miyaura cross-coupling reaction. Adv Synth Catal 351:1732–1736CrossRefGoogle Scholar
  14. 14.
    Bedford RB, Nakamura M, Gower NJ, Haddow MF, Hall MA, Huwe M, Hashimoto T, Okopie RA (2009) Iron-catalysed Suzuki coupling? A cautionary tale. Tetrahedron Lett 50:6110–6111CrossRefGoogle Scholar
  15. 15.
    Kumar LM, Bhat BR (2017) Cobalt pincer complex catalyzed Suzuki-Miyaura cross coupling—a green approach. J Organomet Chem 827:41–48CrossRefGoogle Scholar
  16. 16.
    Kumar LM, Ansari RM, Bhat BR (2017) Catalytic activity of Fe(II) and Cu(II) PNP pincer complexes for Suzuki coupling reaction. Appl Organomet Chem 32:e4054CrossRefGoogle Scholar
  17. 17.
    Ansari RM, Bhat BR (2017) Schiff base transition metal complexes for Suzuki–Miyaura cross-coupling reaction. J Chem Sci 129:1483–1490CrossRefGoogle Scholar
  18. 18.
    Ansari RM, Kumar LM, Bhat BR (2018) Air-stable cobalt(II) and nickel(II) complexes with schiff base ligand for catalyzing Suzuki–Miyaura cross-coupling reaction. Russ J Coord Chem 44:1–8CrossRefGoogle Scholar
  19. 19.
    Ansari RM, Mahesh LK, Bhat BR (2018) Cobalt schiff base complexes: synthesis characterization and catalytic application in suzuki-Miyaura reaction. J Chem Eng, Chin.  https://doi.org/10.1016/j.cjche.2018.05.002 CrossRefGoogle Scholar
  20. 20.
    Saroja A, Bhat BR (2019) Cobalt schiff base immobilized on a graphene nanosheet with N, O Linkage for cross-coupling reaction. Ind Eng Chem Res 58:590–601CrossRefGoogle Scholar
  21. 21.
    Kumar LM, Mishra P, Bhat BR (2019) Fe–PNP pincer complex immobilized on graphene oxide as a catalyst for Suzuki-Miyaura coupling reactions. Catal Lett 149:1118–1124CrossRefGoogle Scholar
  22. 22.
    Baur WH (1962) Zur Kristallchemie der Salzhydrate. Die Kristallstrukturen von MgSO4.4H2O (leonhardtit) und FeSO4.4H2O (rozenit). Acta Cryst 15:815–826CrossRefGoogle Scholar
  23. 23.
    CCDC Search performed 11th July 2019Google Scholar
  24. 24.
    Glatz M, Schrōder-Holzhacker C, Bichler B, Stōger B, Mereiter K, Veiros LF, Kirchner K (2016) Synthesis and characterization of cationic dicarbonyl Fe(II) PNP pincer complexes. Monatsh Chem 147:1713–1719CrossRefGoogle Scholar
  25. 25.
    Glatz M, Bichler B, Mastalir M, Stöger B, Weil M, Mereiter K, Pittenauer E, Allmaier G, Veiros LF, Kirchner K (2015) Iron(II) complexes featuring κ3- and κ2-bound PNP pincer ligands – the significance of sterics. Dalton Trans 44:281–294CrossRefGoogle Scholar
  26. 26.
    Benito-Garagorri D, Wiedermann J, Pollak M, Mereiter K, Kirchner K (2007) Iron(II) complexes bearing tridentate PNP pincer-type ligands as catalysts for the selective formation of 3-hydroxyacrylates from aromatic aldehydes and ethyldiazoacetate. Organometallics 26:217–222CrossRefGoogle Scholar
  27. 27.
    Glatz M, Holzhacker C, Bichler B, Mastalir M, Stöger B, Mereiter K, Weil M, Veiros LF, Mösch-Zanetti NC, Kirchner K (2015) FeII carbonyl complexes featuring small to bulky PNP pincer ligands – facile substitution of κ2 P, N-bound PNP ligands by carbon monoxide. Eur J Inorg Chem 30:5053–5065CrossRefGoogle Scholar
  28. 28.
    Bichler B, Glatz M, Stöger B, Mereiter K, Veiros LF, Kirchner K (2014) An iron(II) complex featuring κ3 and labile κ2-bound PNP pincer ligands—striking differences between CH2 and NH spacers. Dalton Trans 43:14517–14519CrossRefGoogle Scholar
  29. 29.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRefGoogle Scholar
  30. 30.
    Su H, Li Z, Huo Q, Guan J, Kan Q (2014) Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene. RSC Adv 4:9990–9996CrossRefGoogle Scholar
  31. 31.
    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21:3136–3142CrossRefGoogle Scholar
  32. 32.
    Benito-Garagorri D, Becker E, Wiedermann J, Lackner W, Pollak M, Mereiter K, Kisala J, Kirchner K (2006) Achiral and chiral transition metal complexes with modularly designed tridentate PNP pincer-type ligands based on N-heterocyclic diamines. Organometallics 25:1900–1913CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ChemistryUniversity of Bristol, Cantock’s CloseBristolUK

Personalised recommendations