Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanistic Insight of the Catalytic Role of WOX/SiO2 Catalyst in 2,5-Dimethylfuran to Para-xylene Conversion by DFT Calculation

  • 25 Accesses

Abstract

In this paper, a DFT calculation was used to demonstrate the catalytic role of a WOX/SiO2 catalyst and show the excellent performance in 2,5-dimethylfuran to para-xylene conversion. A model of highly dispersed tungsten oxide supported on the amorphous silica was firstly constructed. A periodic DFT calculation was thereafter carried out to determine the reaction pathway, transition state (TS) and important intermediate structures. For reference purpose, the calculation was also repeat on an alkali ion, representative of a Lewis acid catalyst. Unexpectedly and although tungsten oxide is generally considered and characterized to be a Lewis acid, its mechanism for catalyzing the conversion of 2,5-dimethylfuran and ethylene to PX is differs significantly from other Lewis acids like alkali metal. Typical epoxide intermediates observed in other Lewis acid catalyzed systems are not formed over a WOX/SiO2 catalyst. The calculated reaction barrier indicated that the WOX/SiO2 catalyst has no obvious catalytic effect on the Diels–Alder cycloaddition for 2,5-dimethylfuran and ethylene. It mainly accelerates the dehydration step. The reason for the unique catalytic mechanism of WOX/SiO2 catalyst relies on the coordination of 2,5-dimethylfuran and tungsten that leads to the Diels–Alder cycloaddition that follow the so-called inverse electron demand mechanism. A new catalyst for this reaction was proposed based on the obtained mechanistic understanding.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Mettler MS, Vlachos DG, Dauenhauer PJ (2012) Energy Environ Sci 5:7797–7809

  2. 2.

    Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T (2016) Green Chem 18:342–359

  3. 3.

    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

  4. 4.

    Bruijnincx PC, Weckhuysen BM (2013) Angew Chem Int Ed Engl 52:11980–11987

  5. 5.

    Carlson TR, Cheng Y-T, Jae J, Huber GW (2011) Energy Environ Sci 4:145–161

  6. 6.

    Lyons TW, Guironnet D, Findlater M, Brookhart M (2012) J Am Chem Soc 134:15708–15711

  7. 7.

    Cheng YT, Jae J, Shi J, Fan W, Huber GW (2012) Angew Chem Int Ed Engl 51:1387–1390

  8. 8.

    Lin Z, Ierapetritou M, Nikolakis V (2013) AIChE J 59:2079–2087

  9. 9.

    Grieco PA, Nunes JJ, Gaul MD (1990) Cheminform 21:4595–4596

  10. 10.

    Casaschi A, Desimoni G, Faita G, Invernizzi AG, Lanati S, Righetti PP (1993) J Am Chem Soc 115:8002–8007

  11. 11.

    Nikbin N, Do PT, Caratzoulas S, Lobo RF, Vlachos DG (2013) J Catal 297:35–43

  12. 12.

    Li Y-P, Head-Gordon M, Bell AT (2014) J Phys Chem C 118:22090–22095

  13. 13.

    Nikbin N, Feng S, Caratzoulas S, Vlachos DG (2014) J Phys Chem C 118:24415–24424

  14. 14.

    Cho HJ, Ren L, Vattipalli V, Yeh Y-H, Gould N, Xu B, Gorte RJ, Lobo R, Dauenhauer PJ, Tsapatsis M, Fan W (2017) ChemCatChem 9:398–402

  15. 15.

    Liu Y, Li Q, Gao S, Shang JK (2014) CrystEngComm 16:7493–7501

  16. 16.

    Peng Y, Li J, Chen L, Chen J, Han J, Zhang H, Han W (2012) Environ Sci Technol 46:2864–2869

  17. 17.

    Feng X, Shen C, Ji K, Yin J, Tan T (2017) Catal Sci Technol 7:5540–5549

  18. 18.

    Pitman MC, van Duin AC (2012) J Am Chem Soc 134:3042–3053

  19. 19.

    Fogarty JC, Aktulga HM, Grama AY, van Duin ACT, Pandit SA (2010) J Chem Phys 132:174704

  20. 20.

    Lwin S, Wachs IE (2014) ACS Catal 4:2505–2520

  21. 21.

    Amakawa K, Sun L, Guo C, Hävecker M, Kube P, Wachs IE, Lwin S, Frenkel AI, Patlolla A, Hermann K (2013) Angew Chem Int Ed 52:13553–13557

  22. 22.

    Kresse G, Hafner J (1993) Phys Rev B 47:558–561

  23. 23.

    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

  24. 24.

    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

  25. 25.

    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

  26. 26.

    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

  27. 27.

    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904

  28. 28.

    Kresse G, Marsman M, Furthmüller J (2013) URL: http://cms.mpi.univie.ac.at/VASP

  29. 29.

    Yang X, Dai W, Gao R, Fan K (2007) J Catal 249:278–288

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant U1663227).

Author information

Correspondence to Ziheng Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Fang, Y. & Tan, T. Mechanistic Insight of the Catalytic Role of WOX/SiO2 Catalyst in 2,5-Dimethylfuran to Para-xylene Conversion by DFT Calculation. Catal Lett 150, 794–801 (2020). https://doi.org/10.1007/s10562-019-02977-3

Download citation

Keywords

  • WOX/SiO2 catalyst
  • DFT calculation
  • 2,5-Dimethylfuran to para-xylene conversion
  • Diels–Alder cycloaddition
  • Dehydration