Advertisement

Zinc and Nitrogen-Doped Carbon In-Situ Wrapped ZnO Nanoparticles as a High-Activity Catalyst for Acetylene Acetoxylation

  • Libing Hu
  • Zhuang Xu
  • Peijie He
  • Xugen WangEmail author
  • Zhiqun Tian
  • Huifang Yuan
  • Feng YuEmail author
  • Bin Dai
Article
  • 48 Downloads

Abstract

Acetylene chemical process, especially catalyzing acetylene acetoxylation for the synthesis of vinyl acetate (VAc), has attracted wide attention in coal-rich countries. Although great efforts have been made to prepare different catalysts to improve the VAc synthesis via acetylene acetoxylation, the acetic acid (HAc) conversion cannot achieve a satisfactory level, much lower than 60%. Herein, ZnO nanoparticles in situ wrapped on zinc-nitrogen-carbon materials (ZnO@ Zn–N–C) have been successfully synthesized. Due to the simultaneous presence of nitrogen and carbon in chitosan, the obtained carbon material achieved in situ nitrogen doping during the high-temperature treatment. Furthermore, the as-obtained ZnO@Zn–N–C exhibits high specific surface area of 1430.1 m2/g and pore volume of 0.92 cm3/g, because Zn composites have the ability to etch carbon to form pores. In particular, ZnO@Zn–N–C displays an amazing catalytic activity for acetylene acetoxylation to synthesize VAc with the HAc conversion high up to 88.8%, which is much higher than those reported in other papers before.

Graphic Abstract

Keywords

Zinc oxide Zinc–nitrogen–carbon Vinyl acetate Acetylene chemical process Acetylene acetoxylation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21406144, U1403294), and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46).

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Renneke R, Mcintosh SR, Arunajatesan V, Cruz M, Chen B, Tacke T, Lansink-Rotgerink H, Geisselmann A, Mayer R, Hausmann R (2006) Top Catal 38:279CrossRefGoogle Scholar
  2. 2.
    Calaza F (2014) J Catal 312:37CrossRefGoogle Scholar
  3. 3.
    Kumar D, Chen MS, Goodman DW (2007) Catal Today 123:77CrossRefGoogle Scholar
  4. 4.
    Gao F, Wang Y, Calaza F, Stacchiola D, Tysoe WT (2008) J Mol Catal A 281:14CrossRefGoogle Scholar
  5. 5.
    Xu H, Yu T, Li M (2015) J Chem 2015:1Google Scholar
  6. 6.
    Pohl MM, Radnik J, Schneider M, Bentrup U, Linke D, Brückner A, Ferguson E (2009) J Catal 262:314CrossRefGoogle Scholar
  7. 7.
    Harold S (2014) Chem Rev 114:1743CrossRefGoogle Scholar
  8. 8.
    Hu J, Yang Q, Yang L, Zhang Z, Su B, Bao Z, Ren Q, Xing H, Dai S (2015) ACS Catal 5:6724CrossRefGoogle Scholar
  9. 9.
    Kawaguchi T, Wakasugi T (2010) J Chem Technol Biotechnol 42:113CrossRefGoogle Scholar
  10. 10.
    Zhang M, Wu X, Huang X, Yang B, Yu Y (2017) Comput Theor Chem 1115:253CrossRefGoogle Scholar
  11. 11.
    Hou CY, Feng LR, Qiu FL (2009) Chin Chem Lett 20:865CrossRefGoogle Scholar
  12. 12.
    Yan FW, Guo CY, Yan F, Li FB, Qian QL, Yuan GQ (2010) Russ J Phys Chem A 84:796CrossRefGoogle Scholar
  13. 13.
    Hoang Bong, Oleg Naumovich, Temkin Hoang, Binh Dorina, Ivanova Yamandiy (2011) J Chem Chem Eng 5:473Google Scholar
  14. 14.
    Bong HK, Binh HH, Kurlyandskaya II, Nyrkova AN, Yamandii DI, Temkin ON (2013) Russ J Appl Chem 86:1691CrossRefGoogle Scholar
  15. 15.
    Wu X, He P, Wang X, Dai B (2017) Chem Eng J 309:172CrossRefGoogle Scholar
  16. 16.
    He P, Wu X, Huang L, Zhu M, Wang X, Dai B (2018) Catal Commun 112:5CrossRefGoogle Scholar
  17. 17.
    He P, Huang L, Wu X, Xu Z, Zhu M, Wang X, Dai B (2018) Catalysts 8:239CrossRefGoogle Scholar
  18. 18.
    Liu M, Guo X, Hu L, Yuan H, Wang G, Dai B, Zhang L, Yu F (2019) ChemNanoMat 5:187Google Scholar
  19. 19.
    Wang L, Liu M, Wang G, Dai B, Yu F, Zhang J (2019) J Alloy Compd 776:43CrossRefGoogle Scholar
  20. 20.
    Huang J, Liang Y, Hu H, Liu S, Cai Y, Dong H, Zheng M, Xiao Y, Liu Y (2017) J Mater Chem A 5:24775CrossRefGoogle Scholar
  21. 21.
    Qu J, Hu Q, Shen K, Zhang K, Li Y, Li H, Zhang Q, Wang J, Quan W (2011) Carbohydr Res 346:822CrossRefPubMedGoogle Scholar
  22. 22.
    Hu L, Yu F, Wang F, Yang S, Peng B, Chen L, Wang G, Hou J, Dai B, Tian Z (2019) Chin Chem Lett.  https://doi.org/10.1016/j.cclet.2019.06.041 CrossRefGoogle Scholar
  23. 23.
    Hu L, Wei Z, Yu F, Yuan H, Liu M, Wang G, Peng B, Dai B, Ma J (2019) J Energy Chem 39:152CrossRefGoogle Scholar
  24. 24.
    Seo DH, Han ZJ, Kumar S, Ostrikov K (2013) Adv Energy Mater 3:1250CrossRefGoogle Scholar
  25. 25.
    Zhang J, Zhou H, Zhu J, Hu P, Hang C, Yang J, Peng T, Mu S, Huang Y (2017) ACS Appl Mater Interfaces 9:24545CrossRefPubMedGoogle Scholar
  26. 26.
    Song P, Luo M, Liu X, Xing W, Xu W, Jiang Z, Gu L (2017) Adv Funct Mater 27:1700802CrossRefGoogle Scholar
  27. 27.
    Liu H, Wang MQ, Chen ZY, Chen H, Xu MW, Bao SJ (2017) Dalton Trans 46:15646CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical EngineeringShihezi UniversityShiheziPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Renewable Energy MaterialsGuangxi UniversityNanningPeople’s Republic of China

Personalised recommendations