Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Promoter Effects on Catalyst Selectivity and Stability for Propylene Partial Oxidation to Acrolein

Abstract

Highly dispersed silica-supported CuOx/SiO2 catalysts were synthesized via solution-phase deposition and studied for their activity, selectivity, and stability in catalyzing the selective oxidation of propylene to acrolein. Strategies for ensuring high metal dispersion included controlling the surface density of silanols (via covalent silanol-capping) or by pre-installing different “promoter” transition metals at submonolayer coverages. A comparison of the effect of first row transition metal promoters showed that V and Cr significantly boost catalyst performance and stabilize CuOx sites against aggregation.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Belin S, Bracey CL, Briois V, Elllis PR, Hutchings GJ, Hyde TI, Sankar G (2013) Catal Sci Technol 3:2944–2957

  2. 2.

    Baussart H, Delobel R, Le Bras M, Leroy JM (1979) J Chem Soc, Faraday Trans 1(75):1337–1345

  3. 3.

    Liu CH, Lai NC, Lee JF, Chen CS, Yang CM (2014) J Catal 316:231–239

  4. 4.

    Imachi M, Kuczkowski RL, Groves JT, Cant NW (1983) J Catal 82:355–364

  5. 5.

    Choi HS, Lin JT, Kuczkowski RL (1986) J Catal 99:72–78

  6. 6.

    Horváth B, Soták T, Hronec M (2011) Appl Catal A 405:18–24

  7. 7.

    Albonetti S, Cavani F, Trifirò F (1996) Catal Rev 38(4):413–438

  8. 8.

    Tüysüz H, Galilea JL, Schüth F (2009) Catal Lett 131:49–53

  9. 9.

    Schuh K, Kleist W, Høj M, Trouillet V, Beato P, Jensen AD, Grunwaldt JD (2015) Catalysts 5(3):1554–1573

  10. 10.

    Zhai Z, Wütschert M, Licht RB, Bell AT (2016) Catal Today 261:146–153

  11. 11.

    Pudar S, Oxgaard J, Chenoweth K, van Duin ACT, Goddard WA (2007) J Phys Chem C 111:16405–16415

  12. 12.

    Fierro JLG, Gambaro LA, Cooper TA, Kremenić G (1983) Appl Catal 6:363–378

  13. 13.

    Panyad S, Jongpatiwut S, Sreethawong T, Rirksomboon T, Osuwan S (2011) Catal Today 174:59–64

  14. 14.

    Labaki M, Lamonier JF, Siffert S, Zhilinskaya EA, Aboukaïs A (2003) Coll Surf A 227:63–75

  15. 15.

    Inui T, Ueda T, Suehiro M (1980) J Catal 65:166–173

  16. 16.

    Grasselli RK (2002) Top Catal 21(1–3):79–88

  17. 17.

    Bettahar MM, Costentin G, Savary L, Lavalley JC (1996) Appl Catal A 145:1–48

  18. 18.

    Bracey CL, Carley AF, Edwards JK, Ellis PR, Hutchings GJ (2011) Catal Sci Technol 1:76–85

  19. 19.

    Wang X, Zhang Q, Guo Q, Lou Y, Yang L, Wang Y (2004) Chem Commun 1396:1397. https://doi.org/10.1039/B402839B

  20. 20.

    Krenzke LD, Keulks GW (1980) J Catal 61:316–325

  21. 21.

    Forzatti P, Villa PL (1982) J Catal 76:188–207

  22. 22.

    Allen M, Betteley R, Bowker M, Hutchings GJ (1991) Catal Today 9:97–104

  23. 23.

    Yang L, He J, Zhang Q, Wang Y (2010) J Catal 276:76–84

  24. 24.

    Bøyesen KL, Kristiansen T, Mathisen K (2014) Phys Chem Chem Phys 16:20451–20463

  25. 25.

    Bøyesen KL, Kristiansen T, Mathisen K (2015) Catal Today 254:21–28

  26. 26.

    Bøyesen KL, Mathisen K (2014) Catal Today 229:14–22

  27. 27.

    Wojciechowska M, Haber J, Łomnicki S, Stoch J (1999) J Mol Catal A 141:155–170

  28. 28.

    Xanthopoulou G, Vekinis G (1998) Appl Catal B 19:37–44

  29. 29.

    Dekker NJJ, Hoorn JAA, Stegenga S, Kapteijn F, Moulijn FA (1992) Am Inst Chem Eng J 38(3):385–396

  30. 30.

    Khanmamedov TK, Kalinkin AV, Kundo NN, Novopashina VM (1988) React Kinet Catal Lett 37(1):83–88

  31. 31.

    Keranen J, Guimon C, Liskola E, Auroux A, Niinisto L (2003) J Phys Chem B 107(39):10773–10784

  32. 32.

    Liu YM, Feng WL, Wang LC, Cao Y, Dai WL, He HY, Fan KN (2006) Catal Lett 106(3–4):145–152

  33. 33.

    Schweitzer NM, Hu B, Das U, Kim H, Greeley J, Curtiss LA, Stair PC, Miller JT, Hock AS (2014) ACS Catal 4:1091–1098

  34. 34.

    Hu B, Getsoian A, Schweitzer NM, Das U, Kim H, Niklas J, Poluektov O, Curtiss LA, Stair PC, Miller JT, Hock AS (2015) J Catal 322:24–37

  35. 35.

    Camacho-Bunquin J, Ferrandon M, Sohn H, Yang D, Liu C, Ignacio-de Leon PA, Perras FA, Pruski M, Stair PC, Delferro M (2018) J Am Chem Soc 140:3940–3951

  36. 36.

    Song W, Perez Ferrandez DM, van Haandel L, Liu P, Nijhuis TA (2015) hensen EJM. ACS Catal 5:1100–1111

  37. 37.

    Deng Y, Handoko AD, Du Y, Xi S, Yeo BS (2016) ACS Catal 6:2473–2481

  38. 38.

    Lgarashi K, Tajiri K, Tai Y, Tanemura S (1993) Suppl Z Phys D26:S207

  39. 39.

    Owens L, Tillotson TM, Hair IM (1995) J Non-Cryst Sol 186:177–183

  40. 40.

    Jehng JM, Wachs IE, Weckuysen BM, Schoonheydt RA (1995) J Chem Soc Faraday Trans 91(5):953–961

  41. 41.

    Kim DS, Tatibouet JM, Wachs IE (1992) J Catal 136:209–221

  42. 42.

    Weckhuysen BM, Wachs IE (1996) J Phys Chem 100:14437–14442

  43. 43.

    Strunk J, Baňares MA, Wachs IE (2017) Top Catal 60:1577–1617

  44. 44.

    Lee EL, Wachs IE (2007) J Phys Chem C 111:14410–14425

  45. 45.

    Xie S, Iglesia E, Bell AT (2001) J Phys Chem B 105:5144–5152

  46. 46.

    Niu X, Zhao T, Yuan F, Zhu Y (2015) Sci Rep 5:9153

  47. 47.

    Chu H, Yang L, Zhang Q, Wang Y (2006) J Catal 241:225–228

  48. 48.

    Arena F, Fruteri F, Parmaliana A (1999) Catal Lett 60:59–63

  49. 49.

    Bugrova TA, Litvyakova NN, Mamontov GV (2015) Kinet Catal 56(6):746–752

  50. 50.

    Hu L, Yue B, Chen X, He H (2014) Catal Commun 43:179–183

  51. 51.

    Nauert SL, Schax F, Limberg C, Notestein JM (2016) J Catal 341:180–190

  52. 52.

    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem B 103:630–640

  53. 53.

    Gao X, Wachs IE (2000) J Phys Chem B 104:261–1268

  54. 54.

    Pakharukova VP, Moroz EM, Zyuzin DA, Ishchenko AV, Dolgikh LY, Strizhak PE (2015) J Phys Chem C 119:28828–28835

  55. 55.

    Vilella L, Studt F (2016) Eur J Inorg Chem 2016:1514–1520

Download references

Acknowledgements

This work is supported by the Department of Energy, Laboratory Directed Research and Development funding at Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This research used resources of the Advanced Photon Source and the Center for Nanoscale Materials, U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Correspondence to Magali Ferrandon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1865 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ignacio-de Leon, P.A., Ferrandon, M., Savereide, L.M. et al. Promoter Effects on Catalyst Selectivity and Stability for Propylene Partial Oxidation to Acrolein. Catal Lett 150, 826–836 (2020). https://doi.org/10.1007/s10562-019-02969-3

Download citation

Keywords

  • Acrolein
  • Copper
  • Oxidation
  • Promoter
  • Propylene