Advertisement

Theoretical Investigation on Denitrification Mechanism of Piperidine: Effects of Methylation Versus Protonation on C–N Bond Activation

  • Houyu Zhu
  • Guixia Li
  • Yongqing Gong
  • Xin Li
  • Xuefei Ding
  • Xiaoqing LuEmail author
  • Lianming Zhao
  • Yuhua Chi
  • Wenyue GuoEmail author
Article
  • 71 Downloads

Abstract

The denitrification mechanisms of piperidine, 2-methylpiperidine (2-MP), and 2,6-dimethylpiperidine (2,6-DMP) on MoP(001) were studied using self-consistent periodic density functional theory (DFT). These molecules located at Mo top site via the N atom and the molecular planes parallel with MoP surface. The energy barrier of the C–N bond cleavage of piperidinium (protonated piperidine) was much lower than that of the direct C–N bond cleavage of piperidine, indicating of a promoting effect of the protonation on the C–N bond cleavage, and the same trend was also found for 2-MP and 2,6-DMP. Our calculations suggested that the α-position methylation would not facilitate the hydrogenolysis pathway (protonation and subsequent C–N bond cleavage) of piperidine, in accordance with the experimental results. Both the protonation and α-position methylation could promote the C–N bond cleavage of piperidine on MoP(001), and the positive effect of protonation on C–N bond activation was more significant than that of the methylation.

Graphic Abstract

Keywords

Piperidine Denitrification C–N bond cleavage MoP DFT 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (21776315), Natural Science Foundation of Shandong Province (ZR2017MB053), PetroChina Innovation Foundation (2016D-5007-0401, 2017D-5007-0402), and the Fundamental Research Funds for the Central Universities (17CX02031A, 19CX05001A).

Compliance with Ethical Standards

Conflict of interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    Tian S, Li X, Wang AJ, Chen YP, Li HT, Hu YK (2018) Catal Lett 148:1579–1588CrossRefGoogle Scholar
  2. 2.
    Ding SJ, Jiang SJ, Zhou YS, Wei Q, Zhou WW (2017) J Catal 345:24–38CrossRefGoogle Scholar
  3. 3.
    de Souza EE, Ramalho TC, de Alencastro RB (2016) J Phys Chem C 120:4881–4894CrossRefGoogle Scholar
  4. 4.
    Saito K, Kondo K, Akiyama T (2015) Org Lett 17:3366–3369CrossRefPubMedGoogle Scholar
  5. 5.
    Rodriguez JA, Illas F (2012) Phys Chem Chem Phys 14:427–438CrossRefPubMedGoogle Scholar
  6. 6.
    Li GX, Zhu HY, Zhao LM, Guo WY, Ma HF, Yu YC, Lu XQ (2016) J Phys Chem C 120:23009–23023CrossRefGoogle Scholar
  7. 7.
    Al-Megren HA, González-Cortés SL, Xiao T, Green MLH (2007) Appl Catal A 329:36–45CrossRefGoogle Scholar
  8. 8.
    Bachrach M, Marks TJ, Notestein JM (2016) ACS Catal 6:1455–1476CrossRefGoogle Scholar
  9. 9.
    Zeuthen P, Knudsen KG, Whitehurst DD (2001) Catal Today 65:307–314CrossRefGoogle Scholar
  10. 10.
    Gray MR (1994) Fuel Energy Abstr 36:261Google Scholar
  11. 11.
    Abdallah WA, Nelson AE, Gray MR (2004) Surf Sci 569:193–206CrossRefGoogle Scholar
  12. 12.
    Oyama ST, Clark P, da Silva VT, Lede EJ, Requejo FG (2001) J Phys Chem B 105:4961–4966CrossRefGoogle Scholar
  13. 13.
    Phillips DC, Sawhill SJ, Self R, Bussell ME (2002) J Catal 207:266–273CrossRefGoogle Scholar
  14. 14.
    Oyama ST (2003) J Catal 216:343–352CrossRefGoogle Scholar
  15. 15.
    Stinner C, Prins R, Weber Th (2000) J Catal 191:438–444CrossRefGoogle Scholar
  16. 16.
    Bunch A, Zhang LP, Karakas G, Ozkan US (2000) Appl Catal A 190:51–60CrossRefGoogle Scholar
  17. 17.
    Oyama ST, Wang X, Lee YK, Chun WJ (2004) J Catal 221:263–273CrossRefGoogle Scholar
  18. 18.
    Li GX, Zhao LM, Zhu HY, Liu XP, Ma HF, Yu YC, Guo WY (2017) Phys Chem Chem Phys 19:17449–17460CrossRefPubMedGoogle Scholar
  19. 19.
    Stinner C, Prins R, Weber Th (2001) J Catal 202:187–194CrossRefGoogle Scholar
  20. 20.
    Ho TC (2006) Catal Rev 30:117–160CrossRefGoogle Scholar
  21. 21.
    Olalde A, Perot BG (1985) Appl Catal 13:373–384CrossRefGoogle Scholar
  22. 22.
    Satterfield CN, Modell M, Hites RA, Declerck CJ (1978) Ind Eng Chem Proc Des Dev 17:141–148CrossRefGoogle Scholar
  23. 23.
    Kherbeche A, Hubaut R, Bonnelle JP, Grimblot J (1991) J Catal 131:204–214CrossRefGoogle Scholar
  24. 24.
    Hanlon R (1987) Energy Fuels 1:424–430CrossRefGoogle Scholar
  25. 25.
    Oyama ST, Lee YK (2005) J Phys Chem B 109:2109–2119CrossRefPubMedGoogle Scholar
  26. 26.
    Prins R (2001) Adv Catal 46:399–464Google Scholar
  27. 27.
    Hadjiloizou GC, Butt JB, Dranoff JS (1992) Ind Eng Chem Res 31:2503–2516CrossRefGoogle Scholar
  28. 28.
    Perot G (1991) Catal Today 10:447–472CrossRefGoogle Scholar
  29. 29.
    Černý M (1982) Collect Czech Chem Commun 47:928–935CrossRefGoogle Scholar
  30. 30.
    Mou J, Prins R (1995) Catal Lett 35:193–203CrossRefGoogle Scholar
  31. 31.
    Jlan M, Cerda JLR, Prins R (1995) Bulletin Des Sociétés Chimiques Belges 104:225–230CrossRefGoogle Scholar
  32. 32.
    Boorman PM, Kydd RA, Sorensen TS, Chong K, Lewis JM, Bell WS (1992) Fuel 71:87–93CrossRefGoogle Scholar
  33. 33.
    Wang XQ, Clark P, Oyama ST (2002) J Catal 208:321–331CrossRefGoogle Scholar
  34. 34.
    March J (1985) Advanced organic chemistry, 3rd edn. Wiley, New York, pp 1–70Google Scholar
  35. 35.
    Portefaix JL, Cattenot M, Guerriche M, Breysse M (1991) Catal Lett 9:127–132CrossRefGoogle Scholar
  36. 36.
    Delley B (1990) J Chem Phys 92:508–517CrossRefGoogle Scholar
  37. 37.
    Delley B (1996) J Phys Chem 100:6107–6110CrossRefGoogle Scholar
  38. 38.
    Delley B (2000) J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  39. 39.
    Perdew JP, Yue W (1986) Phys Rev B 33:8800–8802CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Wang Y (1992) Phy Rev B 45:13244–13249CrossRefGoogle Scholar
  41. 41.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  42. 42.
    Delley B (2002) Phys Rev B 66:5188–5192CrossRefGoogle Scholar
  43. 43.
    Ren J, Huo CF, Wen XD, Cao Z, Wang JG, Li YW, Jiao HJ (2006) J Phys Chem B 110:22563–22569CrossRefPubMedGoogle Scholar
  44. 44.
    Lundström T, Rundqvist S (1963) Acta Chem Scand 17:37–46CrossRefGoogle Scholar
  45. 45.
    Winkler B, Knorr K, Hytha M, Milman V, Soto V, Avalos M (2003) J Phys Chem Solids 64:405–411CrossRefGoogle Scholar
  46. 46.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  47. 47.
    Vayner E, Ball DW (2000) J Mol Struct 496:175–183CrossRefGoogle Scholar
  48. 48.
    Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225–232CrossRefGoogle Scholar
  49. 49.
    Liu P, Rodriguez JA (2003) Catal Lett 91:247–252CrossRefGoogle Scholar
  50. 50.
    Černý M (1979) Collect Czech Chem Commun 44:85–98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Houyu Zhu
    • 1
  • Guixia Li
    • 1
    • 2
  • Yongqing Gong
    • 1
  • Xin Li
    • 1
  • Xuefei Ding
    • 1
  • Xiaoqing Lu
    • 1
    Email author
  • Lianming Zhao
    • 1
  • Yuhua Chi
    • 1
  • Wenyue Guo
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringChina University of Petroleum (East China)QingdaoChina
  2. 2.Science and Information Science CollegeQingdao Agriculture UniversityQingdaoChina

Personalised recommendations