Advertisement

Dehydrogenative Coupling of Toluene Promoted by Multi-Walled Carbon Nanotubes

  • Soliman I. El-HoutEmail author
  • Yang Zhou
  • Jun Kano
  • Yoshiaki Uchida
  • Yuta NishinaEmail author
Article
  • 11 Downloads

Abstract

We report here the formation of carbon–carbon bonds via carbon-hydrogen bond activation catalysed by multi-walled carbon nanotubes (mwcnts), the catalytic activity of which is influenced by nanocarbon morphology and structure. Control of nanocarbon defects and edges allows the realisation of a high-performance carbon-based catalyst that can replace its metal-based counterparts.

Graphic Abstract

Keywords

Dehydrogenative coupling MWCNTS Toluene C-H bond activation Carbocatalyst 

Notes

Acknowledgements

The authors gratefully acknowledge W. Chen for his contribution to XPS measurements, T. Yamazaki for his contribution to ESR measurements and H. Suzuki for his contribution to NMR. This work was financially supported by JST SICORP, ANR (ANR-15-JTIC-0002-01), and the Egyptian government.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2019_2951_MOESM1_ESM.docx (1015 kb)
Supplementary material 1 (DOCX 1015 kb)

References

  1. 1.
    Su DS, Wen G, Wu S, Peng F, Schlögl R (2016) Angew Chem Int Ed 55:2CrossRefGoogle Scholar
  2. 2.
    Yu JQ, Shi Z (2010) Top Curr Chem 292:35–56Google Scholar
  3. 3.
    Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A (2015) Chem Rev 115:12138CrossRefGoogle Scholar
  4. 4.
    Perea-Buceta JEPB, Wirtanen T, Laukkanen OV, Mäkelä MK, Nieger M, Melchionna M, Huittinen N, Lopez-Sanchez JA, Helaja J (2013) Angew Chem Int Ed 52(45):11835–11839CrossRefGoogle Scholar
  5. 5.
    Sun CL, Shi ZJ (2014) Chem Rev 114: 9219Google Scholar
  6. 6.
    Liu X, Dai L (2016) Nat Rev Mater 1:16064CrossRefGoogle Scholar
  7. 7.
    Wirtanen T, Makela MK, Sarfraz J, Ihalainen P, Hietala S, Melchionna M, Helaja J (2015) Adv Synth Catal 357:3718–3726CrossRefGoogle Scholar
  8. 8.
    Melchionna M, Marchesan S, Prato M, Fornasiero P (2015) Catal Sci Technol 5:3859–3875CrossRefGoogle Scholar
  9. 9.
    Gao Y, Tang P, Zhou H, Zhang W, Yang H, Yan N, Hu G, Mei D, Wang J, Ma D (2016) Angew Chem Int Ed 55:3124CrossRefGoogle Scholar
  10. 10.
    Morioku K, Morimoto N, Takeuchi Y, Nishina Y (2016) Sci Rep 6:25824CrossRefGoogle Scholar
  11. 11.
    Prileschajew N (1909) Ber 42:4811CrossRefGoogle Scholar
  12. 12.
    Hoveyda AH, Evans DA, Fu GC (1983) Chem Rev 93:1307CrossRefGoogle Scholar
  13. 13.
    Larsen AS, Wang K, Lockwood MA, Rice GL, Won TJ, Lovell S, Sadílek M, Tureček F, Mayer JM (2002) J Am Chem Soc 124:10112CrossRefGoogle Scholar
  14. 14.
    Evnin AB, Lam AY (1968) Chem Commun 1968:1184Google Scholar
  15. 15.
    Kondo T, Tantayanon S, Tsuji Y, Watanabe Y (1989) Tetrahedron Lett 31:4137CrossRefGoogle Scholar
  16. 16.
    Uemura S, Tanaka S, Okano M (1976) J Chem Soc Perkin Trans 1:1966CrossRefGoogle Scholar
  17. 17.
    King ST (1991) J Catal 131:215CrossRefGoogle Scholar
  18. 18.
    Pumera M (2007) Langmuir 23:6453–6458CrossRefGoogle Scholar
  19. 19.
    Chen ML, Oh WC (2011) Nanoscale Res Lett 6:398CrossRefGoogle Scholar
  20. 20.
    Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Angew Chem Int Ed 53:10804CrossRefGoogle Scholar
  21. 21.
    Bartlett PD (1950) Rec Prog Chem 11:47Google Scholar
  22. 22.
    Singleton DA, Merrigan SR, Liu J, Houk KN (1997) J Am Chem Soc 119:3385CrossRefGoogle Scholar
  23. 23.
    Bravo A, Fontana F, Minisci F, Serri A (1996) Chem Commun 1996:1843CrossRefGoogle Scholar
  24. 24.
    Sheldon RA, Arends IWCE, Brink GJT, Dijksman A (2002) Acc Chem Res 35:774CrossRefGoogle Scholar
  25. 25.
    Cuesta A, Dhamelincourt P, Laureyns J, Alonso AM, Tascón JMD (1994) Carbon 32:1523CrossRefGoogle Scholar
  26. 26.
    Cristarella TC, Chinderle AJ, Hui J, Rodriguez-Lopez J (2015) Langmuir 31:3999CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Core for Interdisciplinary SciencesOkayama UniversityOkayamaJapan
  2. 2.Nanomaterials and Nanotechnology DepartmentCentral Metallurgical Research and Development Institute (CMRDI)HelwanEgypt
  3. 3.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  4. 4.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  5. 5.Precursory Research for Embryonic Science and TechnologyJapan Science and Technology AgencyKawaguchiJapan

Personalised recommendations