Advertisement

N-Doped Porous Carbon Supported Au Nanoparticles for Benzyl Alcohol Oxidation

  • Donglei Mao
  • Mingmin Jia
  • Jianhao Qiu
  • Xiong-Fei Zhang
  • Jianfeng YaoEmail author
Article
  • 14 Downloads

Abstract

N-doped porous carbon (NPC) was produced through a simple and efficient method using biomass-derived pine sawdust as the carbon source, NH4Cl as nitrogen source and NaHCO3 as the activator. Both NPC and porous carbon (PC, prepared without nitrogen-doping) were used as support for Au nanoparticles to catalytic oxidation of benzyl alcohol. As expected, Au/NPC performs a substantially enhanced catalytic activity for benzyl alcohol oxidation in comparison with that of Au/PC (conversion of benzyl alcohol is 98.9% for Au/NPC and 51.4% for Au/PC under the same condition). The better catalytic performance of Au/NPC should be due to the introduction of N atoms into PC support, which not only adsorbs the benzyl alcohol molecules more easily, but also makes the Au nanoparticles smaller and more dispersed. Our experimental results also show that mild temperature (60 °C) is more beneficial for the reaction, O2 atmosphere is a necessity for benzyl alcohol oxidation and Au/NPC can also be used to catalyze oxidation of other aromatic alcohols.

Graphic Abstract

Keywords

Heterogeneous catalysis Alcohols Oxidation Immobilization Gold Pine sawdust Porous carbon Nitrogen-doping 

Notes

Acknowledgements

The authors are grateful for the financial support of National Key R&D Program of China (2017YFD0601006).

References

  1. 1.
    Tanaka A, Hashimoto K, Kominami H (2012) J Am Chem Soc 134:14526–14533CrossRefGoogle Scholar
  2. 2.
    Su Y, Han Z, Zhang L, Wang W, Duan M, Li X, Zheng Y, Wang Y, Lei X (2017) Appl Catal B 217:108–114CrossRefGoogle Scholar
  3. 3.
    Canepa AL, Elias VR, Vaschetti VM, Sabre EV, Eimer GA, Casuscelli SG (2017) Appl Catal A 545:72–78CrossRefGoogle Scholar
  4. 4.
    Hong Y, Jing X, Huang J, Sun D, Odoom-Wubah T, Yang F, Du M, Li Q (2014) ACS Sustain Chem Eng 2:1752–1759CrossRefGoogle Scholar
  5. 5.
    Li Y, Huang J, Hu X, Lam FL-Y, Wang W, Luque R (2016) J Mol Catal A 425:61–67CrossRefGoogle Scholar
  6. 6.
    Liu C-H, Lin C-Y, Chen J-L, Lu K-T, Lee J-F, Chen J-M (2017) J Catal 350:21–29CrossRefGoogle Scholar
  7. 7.
    Liu J, Zou S, Wu J, Kobayashi H, Zhao H, Fan J (2018) Chin J Catal 39:1081–1089CrossRefGoogle Scholar
  8. 8.
    Choudhary VR, Jha R, Jana P (2007) Green Chem 9:267–272CrossRefGoogle Scholar
  9. 9.
    Adnan RH, Golovko VB (2019) Catal Lett 149:449–455CrossRefGoogle Scholar
  10. 10.
    Li MS, Cardenas-Lizana F, Keane MA (2018) Appl Catal A 557:145–153CrossRefGoogle Scholar
  11. 11.
    Marelli M, Jouve A, Villa A, Psaro R, Balerna A, Prati L, Evangelisti C (2019) J Phys Chem C 123:2864–2871CrossRefGoogle Scholar
  12. 12.
    Li SX, Cai JB, Wu XQ, Liu BW, Chen QY, Li YH, Zheng FY (2018) J Hazard Mater 346:52–61CrossRefGoogle Scholar
  13. 13.
    Guo WY, Niu S, Shi W, Zhang BS, Yu WZ, Xie YN, Ji XB, Wu YF, Su DS, Shao LD (2018) Catal Sci Technol 8:2333–2339CrossRefGoogle Scholar
  14. 14.
    Zhang P, Gong Y, Li H, Chen Z, Wang Y (2013) Nat Commun 4:1593CrossRefGoogle Scholar
  15. 15.
    Donoeva B, Masoud N, de Jongh PE (2017) ACS Catal 7:4581–4591CrossRefGoogle Scholar
  16. 16.
    Zhang BS, Shao LD, Zhang W, Sun XY, Pan XL, Su DS (2014) Chemcatchem 6:2607–2612CrossRefGoogle Scholar
  17. 17.
    Mao C, Zhang X, Zhang X, Jia M, Yao J (2019) Chin J Chem Eng 27:1067–1072CrossRefGoogle Scholar
  18. 18.
    Cerro-Alarcon M, Maroto-Valiente A, Rodriguez-Ramos I, Guerrero-Ruiz A (2005) Carbon 43:2711–2722CrossRefGoogle Scholar
  19. 19.
    Cao Y, Mao S, Li M, Chen Y, Wang Y (2017) ACS Catal 7:8090–8112CrossRefGoogle Scholar
  20. 20.
    Chen YZ, Wang Z, Mao SJ, Wang Y (2019) Chin J Catal 40:971–979CrossRefGoogle Scholar
  21. 21.
    Tang M, Deng J, Li M, Li X, Li H, Chen Z, Wang Y (2016) Green Chem 18:6082–6090CrossRefGoogle Scholar
  22. 22.
    Li YJ, Wang GL, Wei T, Fan ZJ, Yan P (2016) Nano Energy 19:165–175CrossRefGoogle Scholar
  23. 23.
    Liu R-L, Ji W-J, He T, Zhang Z-Q, Zhang J, Dang F-Q (2014) Carbon 76:84–95CrossRefGoogle Scholar
  24. 24.
    Tang M, Mao S, Li M, Wei Z, Xu F, Li H, Wang Y (2015) ACS Catal 5:3100–3107CrossRefGoogle Scholar
  25. 25.
    Li Z, Liu J, Xia C, Li F (2013) ACS Catal 3:2440–2448CrossRefGoogle Scholar
  26. 26.
    Gong WB, Chen C, Zhang HM, Zhang Y, Zhang YX, Wang GZ, Zhao HJ (2017) Mol Catal 429:51–59CrossRefGoogle Scholar
  27. 27.
    Chen M, Shao L-L, Liu Y-P, Ren T-Z, Yuan Z-Y (2015) J Power Sour 283:305–313CrossRefGoogle Scholar
  28. 28.
    Ma Z, Zhang H, Yang Z, Zhang Y, Yu B, Liu Z (2014) J Mater Chem A 2:19324–19329CrossRefGoogle Scholar
  29. 29.
    Zhang D, Zheng L, Ma Y, Lei L, Li Q, Li Y, Luo H, Feng H, Hao Y (2014) ACS Appl Mater Inter 6:2657–2665CrossRefGoogle Scholar
  30. 30.
    Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) J Mater Chem A 3:18154–18162CrossRefGoogle Scholar
  31. 31.
    Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Chem Mater 18:3039–3045CrossRefGoogle Scholar
  32. 32.
    Humayun M, Fu Q, Zheng Z, Li H, Luo W (2018) Appl Catal A 568:139–147CrossRefGoogle Scholar
  33. 33.
    Zhang LM, Wang ZB, Zhang JJ, Sui XL, Zhao L, Gu DM (2015) Carbon 93:1050–1058CrossRefGoogle Scholar
  34. 34.
    Chen YF, Li ZJ, Zhu YB, Sun DM, Liu XE, Xu L, Tang YW (2019) Adv Mater 31:2254–2262Google Scholar
  35. 35.
    Liu Y, Yang X, Liu H, Ye Y, Wei Z (2017) Appl Catal B 218:679–689CrossRefGoogle Scholar
  36. 36.
    Gui Z, Cao W, Saravanamurugan S, Riisager A, Chen L, Qi Z (2016) Chemcatchem 8:3636–3643CrossRefGoogle Scholar
  37. 37.
    Yu J, Guo M, Muhammad F, Wang A, Yu G, Ma H, Zhu G (2014) Microporous Mesoporous Mater 190:117–127CrossRefGoogle Scholar
  38. 38.
    Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nano Energy 19:165–175CrossRefGoogle Scholar
  39. 39.
    Li Y, Yang J, Zhao N, Huang J, Zhou Y, Xu K, Zhao N (2017) Appl Catal A 534:30–39CrossRefGoogle Scholar
  40. 40.
    Gao S, Fan H, Wei X, Li L, Bando Y, Golberg D (2013) Part Part Syst Char 30:864–872Google Scholar
  41. 41.
    Fu Y, Huang T, Jia B, Zhu J, Wang X (2017) Appl Catal B 202:430–437CrossRefGoogle Scholar
  42. 42.
    Guo Z, Liu B, Zhang QH, Deng WP, Wang Y, Yang YH (2014) Chem Soc Rev 43:3480–3524CrossRefGoogle Scholar
  43. 43.
    Zhang X, Ke X, Zhu H (2012) Chem-Eur J 18:8048–8056CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Donglei Mao
    • 1
  • Mingmin Jia
    • 1
  • Jianhao Qiu
    • 1
  • Xiong-Fei Zhang
    • 1
  • Jianfeng Yao
    • 1
    Email author
  1. 1.College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest BiomassNanjing Forestry UniversityNanjingChina

Personalised recommendations