Effect of Sodium Ions on Catalytic Performance of TS-1 in Gas-Phase Epoxidation of Propylene with Hydrogen Peroxide Vapor

  • Cuilan Miao
  • Ning He
  • Quanren Zhu
  • Yanhui Yi
  • Zhaochi Feng
  • Hongchen GuoEmail author


Na+ ions in TS-1 influence the results of liquid-phase oxidations of hydrocarbons seriously, and the avoiding of Na+ ion impurity in TS-1 synthesis is crucial for its catalytic application. In this paper, however, the solvent-free gas-phase epoxidation of propylene with H2O2 vapor (G-HPPO) was investigated over TS-1 zeolites with different Na+ ion content. Significant improvement in the performance of G-HPPO process was observed with NaOH solution hydrothermally modified TS-1 which had a Na/Ti ratio of 0.68. The performance of G-HPPO process was further enhanced when the Na/Ti ratio of hydrothermally modified TS-1 was increased to 1.0 via subsequent Na+ ion impregnation. The catalyst showed 16.9% propylene conversion, 97.5% PO selectivity and 79.3% H2O2 utility at a propylene to H2O2 ratio of around 5. On the other hand, when the Na+ ion content of the hydrothermally modified TS-1 was reduced via subsequent NH4+-exchange, the resulted catalyst exhibited a remarkably deteriorated G-HPPO process performance. By Combining the characterizations of UV–Raman, UV–vis and FT-IR with DFT calculation, it is concluded that in the NaOH solution hydrothermally modified TS-1 the Na+ ions served as counter cations of the silicon hydroxyls adjacent to “open” tetra-coordinated framework Ti sites. As a result, the local environment of the “open” Ti sites (with titanium hydroxyls) was adjusted and the Ti sites were properly activated. Whereas, in the case of excess Na+ ions were introduced into the TS-1 (for example Na/Ti ratio more than 1.0), the titanium hydroxyl of the “open” Ti sites would be occupied, to which the deteriorated G-HPPO process performance was ascribed.

Graphic Abstract


Propylene epoxidation TS-1 Sodium ions Hydrothermal modification 



This work is financially supported by the National Natural Science Foundation of China (No. 21603023).

Supplementary material

10562_2019_2948_MOESM1_ESM.docx (79 kb)
Supplementary material 1 (DOCX 79 kb)


  1. 1.
    Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) Ind Eng Chem Res 45:3447–3459CrossRefGoogle Scholar
  2. 2.
    Lin M, Xia CJ, Zhu B, Li H, Shu XT (2016) Chem Eng J 295:370–375CrossRefGoogle Scholar
  3. 3.
    Zhao JL, Zhou JC, Su J, Guo HC, Wang XS, Gong WM (2007) AIChE J 53:3204–3209CrossRefGoogle Scholar
  4. 4.
    Su J, Zhou JC, Liu CY, Wang XS, Guo HC (2010) Chin J Catal 31:1195–1199CrossRefGoogle Scholar
  5. 5.
    Klemm E, Dietzsch E, Schwarz T, Kruppa T, Oliveira ALD, Becker F, Markowz G, Schirrmeister S, Schutte R, Caspary KJ, Schuth F, Honicke D (2008) Ind Eng Chem Res 47:2086–2090CrossRefGoogle Scholar
  6. 6.
    Su J, Xiong G, Zhou J, Liu WH, Zhou DH, Wang GR, Wang XS, Guo HC (2012) J Catal 288:1–7CrossRefGoogle Scholar
  7. 7.
    Perez Ferrandez DM, de Croon MHJM, Schouten JC, Nijhuis TA (2013) Ind Eng Chem Res 52:10126–10132CrossRefGoogle Scholar
  8. 8.
    Perego C, Carati A, Ingallina P, Mantegazza MA, Bellussi G (2001) Appl Catal A 221:63–72CrossRefGoogle Scholar
  9. 9.
    Fan WB, Duan R-G, Yokoi T, Wu P, Kubota Y, Tatsumi T (2008) J Am Chem Soc 130:10150–10164CrossRefGoogle Scholar
  10. 10.
    Guo Q, Feng ZC, Li G, Fan FT, Li C (2013) J Phys Chem C 117:2844–2848CrossRefGoogle Scholar
  11. 11.
    Zuo Y, Liu M, Zhang T, Hong LW, Guo XW, Song WC, Chen YS, Zhu PY, Jaye C, Fischer D (2015) RSC Adv 5:17897–17904CrossRefGoogle Scholar
  12. 12.
    Signorile M, Crocellà V, Damin A, Rossi B, Lamberti C, Bonino F, Bordig S (2018) J Phys Chem C 122:9021–9034CrossRefGoogle Scholar
  13. 13.
    Clerici MG, Ingallina P (1993) J Catal 140:71–83CrossRefGoogle Scholar
  14. 14.
    Lamberti C, Bordig S, Arduino D, Zecchina A (1998) J Phys Chem B 102:6382–6390CrossRefGoogle Scholar
  15. 15.
    Wells DH Jr, Delgass WN, Thomson KT (2004) J Am Chem Soc 126:2956–2962CrossRefGoogle Scholar
  16. 16.
    Nie XW, Ji XJ, Chen YG, Guo XW, Song CS (2017) Mol Catal 441:150–167CrossRefGoogle Scholar
  17. 17.
    Khouw CB, Davis ME (1995) J Catal 151:77–86CrossRefGoogle Scholar
  18. 18.
    Tatsumi T, Koyano KA, Shimizu Y (2000) Appl Catal A 200:125–134CrossRefGoogle Scholar
  19. 19.
    Li G, Wang XS, Yan HS, Chen YY, Su QS (2001) Appl Catal A 218:31–38CrossRefGoogle Scholar
  20. 20.
    Capel-Sanchez MC, Campos-Martin JM, Fierro JLG (2003) Appl Catal A 246:69–77CrossRefGoogle Scholar
  21. 21.
    Jin SQ, Feng ZC, Fan FT, Li C (2014) Catal Lett 145:468–481CrossRefGoogle Scholar
  22. 22.
    Wang XS, Guo XW, Li G (2002) Catal Today 74:65–75CrossRefGoogle Scholar
  23. 23.
    Yi YH, Zhou JC, Guo HC, Zhao JL, Su J, Wang L, Wang XS, Gong WM (2013) Angew Chem Int Ed 52:8446–8449CrossRefGoogle Scholar
  24. 24.
    Xiong G, Cao YY, Guo ZD, Jia QY, Tian FP, Liu LP (2016) Phys Chem Chem Phys 18:190–196CrossRefGoogle Scholar
  25. 25.
    Wang LL, Xiong G, Su J, Li P, Guo HC (2012) J Phys Chem C 116:9122–9131CrossRefGoogle Scholar
  26. 26.
    Ricchiardi G, Damin A, Bordiga S, Lamberti C, Spano G, Rivetti F, Zecchina A (2001) J Am Chem Soc 123:11409–11419CrossRefGoogle Scholar
  27. 27.
    Hijar CA, Jacubinas RM, Eckert J, Henson NJ, Hay PJ, Ott KC (2000) J Phys Chem B 104:12157–12164CrossRefGoogle Scholar
  28. 28.
    Dong JC, Zhu HL, Xiang YJ, Wang Y, An PF, Gong Y, Liang YX, Qiu LM, Zheng A, Peng XX, Lin M, Xu GT, Guo ZY, Chen DL (2016) J Phys Chem C 120:20114–20124CrossRefGoogle Scholar
  29. 29.
    Li MZ, Yan XY, Zhu MY, Wang MQ, Zhou DH (2018) Catal Sci Technol 8:4975–4984CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cuilan Miao
    • 1
  • Ning He
    • 1
  • Quanren Zhu
    • 1
  • Yanhui Yi
    • 1
  • Zhaochi Feng
    • 2
  • Hongchen Guo
    • 1
    Email author
  1. 1.Department of Catalytic Chemistry and Engineering & State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianPeople’s Republic of China

Personalised recommendations