Advertisement

Synthesis of Sm2MoO6/Ni(OH)2 by Simple Impregnation Method: Photocatalyst for Non-precious Metal and Efficient Hydrogen Production

  • Zeying Liu
  • Jing XuEmail author
  • Qiuting Liao
  • Yanru Li
  • Lingjiao Li
  • Min Mao
Article
  • 6 Downloads

Abstract

Sm2MoO6/Ni(OH)2 was successfully immersed in water first, and the sensitizer is Eosin Y and the sacrificial agent is triethanolamine agent for high-efficiency photocatalytic production of H2. When Sm2MoO6 was loaded onto the surface of Ni(OH)2, the photocatalytic activity (2407.48 μmol g−1 h−1) was 2.6 times that of Ni(OH)2 (925.36 μmol g−1 h−1), which was Sm2MoO6 (169.36 μmol g−1 h−1) is 14.2 times. From a series of characterizations, Sm2MoO6 is an effective cocatalyst to improve the separation of photo-generated charges and the efficiency of electron transfer. Large specific surface areas are a primary requirement for high efficiency catalysts, and the catalyst is sufficiently into contact with the sensitizer and the sacrificial agent to soar the photocatalytic activity.

Graphic Abstract

The first condition for an excellent catalyst is that it has a large specific surface area and can provide more active sites. In the dye sensitization system, the photocatalytic activity of Sm2MoO6/Ni(OH)2 is 2.6 times that of Ni(OH)2 and 14.2 times that of Sm2MoO6. Sm2MoO6 is an effective co-catalyst.

Keywords

Sm2MoO6 Photocatalytic Rare earth 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Ningxia Province (NZ17262).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    Zhang J, Liu Y, Xia B et al (2018) Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta 259:955–961CrossRefGoogle Scholar
  2. 2.
    Liu Z, Xu J, Li Y et al (2018) High performance photocatalytic based on Ce doped CoWO4: controllable synthesis and enhanced photocatalytic activity. Catal Lett 148(10):3205–3213CrossRefGoogle Scholar
  3. 3.
    Zou X, Zhang Y et al (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180CrossRefGoogle Scholar
  4. 4.
    Xu J, Huo F, Zhao Y et al (2018) In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation. Int J Hydrog Energy 43(18):8674–8682CrossRefGoogle Scholar
  5. 5.
    Liu Y, Yu G, Li GD et al (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem 127(37):10902–10907CrossRefGoogle Scholar
  6. 6.
    Meng ZD, Ullah K, Zhu L et al (2014) Modified hydrothermal fabrication of a CoS2-graphene hybrid with improved photocatalytic performance. Mater Sci Semicond Process 27:173–180CrossRefGoogle Scholar
  7. 7.
    Yu H, Xu J, Liu Z et al (2018) Functionalization of sheet structure MoS2 with CeO2-Co3O4 for efficient photocatalytic hydrogen evolution. J Mater Sci 53(21):15271–15284CrossRefGoogle Scholar
  8. 8.
    Li Y, Xu J, Liu Z et al (2018) Performance of amorphous CoSx/oxygen vacancies ZnO heterojunction photocatalytic hydrogen evolution. J Mater Sci: Mater Electron 30(1):246–258Google Scholar
  9. 9.
    Zhu M, Han M, Zhu C et al (2018) Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting. J Colloid Interface Sci 530:256–263CrossRefGoogle Scholar
  10. 10.
    Wang M, Lin M, Li J et al (2017) Metal-organic framework derived carbon-confined Ni2P nanocrystals supported on graphene for an efficient oxygen evolution reaction. Chem Commun 53(59):8372–8375CrossRefGoogle Scholar
  11. 11.
    Zheng S, Li X, Yan B et al (2017) Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7(18):1602733CrossRefGoogle Scholar
  12. 12.
    Dong B, Li W, Huang X et al (2019) Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 55:37–41CrossRefGoogle Scholar
  13. 13.
    Li Q, Chen Y, Yang T et al (2013) Preparation of 3D flower-like NiO hierarchical architectures and their electrochemical properties in lithium-ion batteries. Electrochim Acta 90(5):80–89CrossRefGoogle Scholar
  14. 14.
    Chen J, Zheng J et al (2015) A highly sensitive non-enzymatic glucose sensor based on tremella-like Ni(OH)2 and Au nanohybrid films. J Electroanal Chem 749:83–88CrossRefGoogle Scholar
  15. 15.
    Liu C, Chen Q, Hao Y et al (2019) Ni(OH)2/NiSe2 hybrid nanosheet arrays for enhanced alkaline hydrogen evolution reaction. Int J Hydrog Energy 44(10):4832–4838CrossRefGoogle Scholar
  16. 16.
    Wang T, Pan J, Gasore Achille K et al (2017) A green dual complexation precipitation synthesis of hierarchical α-Ni(OH)2, microspheres and their electrochemical performance. Int J Hydrog Energy 42(30):19139–19147CrossRefGoogle Scholar
  17. 17.
    Krehula S, Ristića M, Wu C et al (2018) Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH)2 nanostructures. J Alloys Compd 750:687–695CrossRefGoogle Scholar
  18. 18.
    Zhao J, Zhang Q et al (2015) Synthesis of Ni(OH)2 nanoflakes through a novel ion diffusion method controlled by ion exchange membrane and electrochemical supercapacitive properties. Electrochim Acta 184:47–57CrossRefGoogle Scholar
  19. 19.
    Chen X, Chen S, Lin C et al (2015) Nickels/CdS photocatalyst prepared by flowerlike Ni/Ni(OH)2 precursor for efficiently photocatalytic H2 evolution. Int J Hydrog Energy 40(2):998–1004CrossRefGoogle Scholar
  20. 20.
    Jose G, Joseph C, Ittyachen MA et al (2007) Structural and optical characterization of CdSe nanocrystallites/rare earth ions in sol-gel glasses. Opt Mater 29(11):1495–1500CrossRefGoogle Scholar
  21. 21.
    Mani KP, George V, Ramakrishnan BP et al (2015) Synthesis and photoluminescence studies of one dimensional Sm2MoO6 nanofibers derived from electrospinning process. J Mater Res Technol 4(2):224–227CrossRefGoogle Scholar
  22. 22.
    Tao D, Meng L, Peng W et al (2018) Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4, for enhanced supercapacitor performance. Int J Hydrog Energy 43(31):14569–14577CrossRefGoogle Scholar
  23. 23.
    Du P, Yu JS et al (2017) Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry. Chem Eng J 327:109–119CrossRefGoogle Scholar
  24. 24.
    Yu L, Nogami M (2010) The synthesis and photoluminescent properties of one-dimensional ZnMoO4: Eu3+ nanocrystals. Mater Lett 64(14):1644–1646CrossRefGoogle Scholar
  25. 25.
    Ghorai TK, Dhak D, Biswas SK et al (2007) Photocatalytic oxidation of organic dyes by nano-sized metal molybdate incorporated titanium dioxide (MxMoxTi1−xO6) (M = Ni, Cu, Zn) photocatalysts. J Mol Catal A 273(1):224–229CrossRefGoogle Scholar
  26. 26.
    Ray SK, Dhakal D, Kshetri YK et al (2017) Cu-α-NiMoO4, photocatalyst for degradation of methylene blue with pathways and antibacterial performance. J Photochem Photobiol, A 348:18–32CrossRefGoogle Scholar
  27. 27.
    Namvar F, Beshkar F, Salavati-Niasari M et al (2017) Novel microwave-assisted synthesis of leaf-like MnMoO4 nanostructures and investigation of their photocatalytic performance. J Mater Sci: Mater Electron 28(11):7962–7968Google Scholar
  28. 28.
    Mani Kamal P, Vimal G, Biju PR et al (2015) Optical nonlinearity and photoluminescence studies of red emitting samarium molybdate nanophosphor. ECS J Solid State Sci Technol 4(5):67–71CrossRefGoogle Scholar
  29. 29.
    Chen L, Zhang J, Ren X et al (2017) Ni(OH)2-CoS2 hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media. Nanoscale 9(43):16632–16637CrossRefGoogle Scholar
  30. 30.
    Yu H, Xu J, Guo H et al (2017) Synergistic effect of rare earth metal Sm oxides and Co1-xS on sheet structure MoS2 for photocatalytic hydrogen evolution. RSC Adv 7(89):56417–56425CrossRefGoogle Scholar
  31. 31.
    Huang Y, Cui F, Zhao Y et al (2018) NiMoO4 nanorod deposited carbon sponges with ant-nest-like interior channels for high-performance pseudocapacitors. Inorg Chem Front 5(7):1594–1601CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zeying Liu
    • 1
  • Jing Xu
    • 1
    • 2
    • 3
    Email author
  • Qiuting Liao
    • 1
  • Yanru Li
    • 1
  • Lingjiao Li
    • 1
  • Min Mao
    • 1
  1. 1.School of Chemistry and Chemical EngineeringNorth Minzu UniversityYinchuanPeople’s Republic of China
  2. 2.Key Laboratory of Chemical Engineering and Technology (North Minzu University)State Ethnic Affairs CommissionYinchuanPeople’s Republic of China
  3. 3.Ningxia Key Laboratory of Solar Chemical Conversion TechnologyNorth Minzu UniversityYinchuanPeople’s Republic of China

Personalised recommendations