Advertisement

EPR Evidence for Dynamic Rearrangements of Vanadium Paramagnetic Centers on the Surface of V-Doped Titanium Dioxide

  • Alexander I. KokorinEmail author
  • Vladimir I. Pergushov
  • Anatoly I. Kulak
Article
  • 24 Downloads

Abstract

Photocatalytic activity of vanadium modified Hombikat UV 100 TiO2 was investigated in of the Rhodamine B photodegradation in a wide range of vanadium content. Structure and properties of VO2+ paramagnetic centers (PCs) formed on TiO2 surface were studied by X-band electron paramagnetic resonance (EPR). Two types of PCs, aggregated and isolated ones, were revealed and described quantitatively. EPR results in comparison with photocatalytic data allowed conclude that the most probable catalytically active centers are the isolated vanadium centers on the V-doped TiO2 surface.

Graphic Abstract

Keywords

EPR spectroscopy Photocatalyst Surface structure Vanadium doping Concentration Titanium dioxide 

Notes

Acknowledgements

Alexander I. Kokorin thanks Russian Foundation for Basic Research (Grant 18-53-00020-Bel-a) for the financial support. We are grateful to Dr. T. N. Galkova (Institute of General and Inorganic Chemistry NANB, Minsk, Belarus Republic) for her help in the sanples preparation, to Prof. A. Kh. Vorob’ev (Faculty of Chemistry, Moscow State University) for providing us with the computer program for processing the experimental EPR spectra.

Supplementary material

10562_2019_2946_MOESM1_ESM.docx (70 kb)
Supplementary material 1 (DOCX 69 kb)

References

  1. 1.
    Khan H, Berk D (2013) J Sol-Gel Sci Technol 68:180–192CrossRefGoogle Scholar
  2. 2.
    Bettinelli M, Dallacasa V, Falcomer D, Fornasiero P, Gombac V, Montini T, Romano L, Speghini A (2007) J Hazard Mater 146:529–534CrossRefGoogle Scholar
  3. 3.
    Mokhtarimehr M, Eshaghi A, Pakshir M (2013) Self-Clean New J Glass Ceram 3:87–90CrossRefGoogle Scholar
  4. 4.
    Chen W-F, Koshy P, Huang Y, Adabifiroozjaei E, Yao Y, Sorrell CC (2016) Int J Hydrogen Energy 41(42):19025–19056CrossRefGoogle Scholar
  5. 5.
    Liu S, Xie T, Chen Z, Wu J (2009) Appl Surf Sci 255:8587–8592CrossRefGoogle Scholar
  6. 6.
    Zhou W, Liu Q, Zhu Z, Zhang J (2010) J Phys D Appl Phys 43:353Google Scholar
  7. 7.
    Bhattacharyya K, Varma S, Tripathi AK, Bharadwaj SR, Tyagi AK (2008) J Phys Chem C 112:19102–19112CrossRefGoogle Scholar
  8. 8.
    Wu JC-S, Chen C-H (2004) J Photochem Photobiol A 163:509–515CrossRefGoogle Scholar
  9. 9.
    Cimieria I, Poelmanb H, Ryckaerta J, Poelman D (2013) J Photochem Photobiol A 263:1–7CrossRefGoogle Scholar
  10. 10.
    Zhao G, Kozuka H, Lin H, Takahashi M, Yoko T (1999) Thin Solid Films 340:125–131CrossRefGoogle Scholar
  11. 11.
    Li H, Zhao G, Han G, Song B (2007) Surf Coat Technol 201:7615–7618CrossRefGoogle Scholar
  12. 12.
    Zhou J, Takeuchi M, Ray AK, Anpo M, Zhao XS (2007) J Coll Interface Sci 311:497–501CrossRefGoogle Scholar
  13. 13.
    Tian B, Li C, Gu F, Jiang H, Hu Y, Zhang J (2009) Chem Eng J 151:220–227CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Shao C, Zhang L, Li X, Liu Y (2010) J Coll Interface Sci 351:57–62CrossRefGoogle Scholar
  15. 15.
    Mohamed MM, Al-Esaimi MM (2006) J Mol Catal A 255:53–61CrossRefGoogle Scholar
  16. 16.
    Chen W-F, Koshy P, Adler L, Sorrell CC (2017) J Austral Ceram Soc 53:569–576CrossRefGoogle Scholar
  17. 17.
    Chang S, Liu W (2011) Appl Catal B 101:333–342CrossRefGoogle Scholar
  18. 18.
    Hamdy MS (2014) J Mol Catal A 393:39–46CrossRefGoogle Scholar
  19. 19.
    Koh PW, Yuliati L, Lee SL (2014) J Teknologi 69(5):45–50Google Scholar
  20. 20.
    Klosek RS, Raftery D (2001) J Phys Chem B 105:2815–2819CrossRefGoogle Scholar
  21. 21.
    Martin EST, Morrison CL, Hoffmann MR (1994) J Phys Chem 98:13695–13704CrossRefGoogle Scholar
  22. 22.
    Pérez-Nicolás M, Navarro-Blasco I, Fernández JM, Alvarez JI (2017) Construct Build Mater 149:257–271CrossRefGoogle Scholar
  23. 23.
    Wang T, Shen D, Xu T, Jiang R (2017) Sci Total Environ 586:347–354CrossRefGoogle Scholar
  24. 24.
    Gallay R, van der Klink JJ (1986) Phys Rev B 34(5):3060–3068CrossRefGoogle Scholar
  25. 25.
    Luca V, Thomson S, Howe RF (1997) J Chem Soc Faraday Trans 93(12):2195–2202CrossRefGoogle Scholar
  26. 26.
    Van Reijen LL, Cossee P (1966) Discrete Faraday Soc 41(1):277–289CrossRefGoogle Scholar
  27. 27.
    Gratzel M, Howe RF (1990) J Phys Chem 94:2566–2572CrossRefGoogle Scholar
  28. 28.
    Davidson A, Che M (1992) J Phys Chem 96:9909CrossRefGoogle Scholar
  29. 29.
    Busca G, Centi G, Marchetti L, Trifiro F (1986) Langmuir 2:568–577CrossRefGoogle Scholar
  30. 30.
    Centi G, Giamello E, Pinelli D, Trifiro F (1991) J Catal 130:220–237CrossRefGoogle Scholar
  31. 31.
    Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F (1999) J Catal 187:419–435CrossRefGoogle Scholar
  32. 32.
    Kokorin AI, Kulak AI, Tomskii IS, Rufov YuN (2013) Russ J Phys Chem B 13:255CrossRefGoogle Scholar
  33. 33.
    Dinse A, Ozarowski A, Hess C, Schomaecker R, Dinse K-P (2008) J Phys Chem C 112:17664–17671CrossRefGoogle Scholar
  34. 34.
    Tomskii IS, Vishnetskaya MV, Kokorin AI (2008) Russ J Phys Chem B 2(2):562Google Scholar
  35. 35.
    Kuska HA, Rogers MT (1968) ESR of first row transition metal complex ions. Wiley, New YorkGoogle Scholar
  36. 36.
    Carrington A, McLachlan AD (1967) Introduction to magnetic resonance with applications to chemistry and chemical physics. Harper & Row, New YorkGoogle Scholar
  37. 37.
    Kokorin AI, Sviridova TV, Kolbanev IV, Sadovskaya LYu, Degtyarev EN, Vorobieva GA, Streletskii AN, Sviridov DV (2018) Russ J Phys Chem B 12:330CrossRefGoogle Scholar
  38. 38.
    Kolbanev IV, Degtyarev EN, Streletskii AN, Kokorin AI (2016) Appl Magn Reson 47:575CrossRefGoogle Scholar
  39. 39.
    Takahashi H, Shiotani M, Kobayashi H, Sohma J (1969) ESR study of v205 catalyst on carriers. J Catal 14:134–141CrossRefGoogle Scholar
  40. 40.
    Kera Y, Matsukaze Y (1986) J Phys Chem 90:5752–5755CrossRefGoogle Scholar
  41. 41.
    Cavani F, Centi G, Foresti E, Trifiro F (1988) J Chem Soc Faraday Trans 84(1):237–254CrossRefGoogle Scholar
  42. 42.
    Sviridova TV, Antonova AA, Kokorin AI, Degtyarev EN, Sviridov DV (2015) Russ J Phys Chem B 9:22CrossRefGoogle Scholar
  43. 43.
    Sviridova TV, Kokorin AI, Antonova AA, Sviridov DV (2015) Russ J Phys Chem B 9:36CrossRefGoogle Scholar
  44. 44.
    Kera Y, Kawashima T (1988) Bull Chem Soc Jpn 61:1491CrossRefGoogle Scholar
  45. 45.
    Sviridova TV, Sadovskaya LYu, Kokorin AI, Konstantinova EA, Agabekov VE, Sviridov DV (2017) Russ J Phys Chem B 11:348CrossRefGoogle Scholar
  46. 46.
    Konstantinova EA, Minnekhanov AA, Kokorin AI, Sviridova TV, Sviridov DV (2018) J Phys Chem C 122:10248CrossRefGoogle Scholar
  47. 47.
    Kon D, Sharpless NE (1966) J Phys Chem 70:106CrossRefGoogle Scholar
  48. 48.
    Che EM, Canosa B, Gonzalez-Elipe AR (1986) J Phys Chem 90:618–621CrossRefGoogle Scholar
  49. 49.
    Goodman F, Raynor BA, Adu JB (1970) Inorg Chem Radiochem 13:188Google Scholar
  50. 50.
    Busca JG, Marchetti L, Centi G, Trifiro F (1985) J Chem Soc Faraday Trans I 81(6):1003–1014CrossRefGoogle Scholar
  51. 51.
    Al’tshuler KSA, Kozyrev BM (1972) Electron paramagnetic resonance of the compounds of intermediate groups. Nauka, Moscow (in Russian) Google Scholar
  52. 52.
    Vorobiev AKh, Chumakova NA (2012) Simulation of rigid-limit and slow-motion EPR spectra for extraction of quantitative dynamic and orientational information. In: Kokorin AI (ed) Nitroxides—theory, experiment and applications. InTech Publ, Riecka, pp 57–112Google Scholar
  53. 53.
    Mizushima K, Tanaka M, Asai A, Iida S, Goodenough JB (1979) J Phys Chem Solids 40(12):1129–1140CrossRefGoogle Scholar
  54. 54.
    Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98(51):13669–13679CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexander I. Kokorin
    • 1
    Email author
  • Vladimir I. Pergushov
    • 2
  • Anatoly I. Kulak
    • 3
  1. 1.Russian Academy of SciencesN. N. Semenov Institute of Chemical Physics RASMoscowRussian Federation
  2. 2.Chemistry DepartmentM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.National Academy of Sciences of BelarusInstitute of General and Inorganic Chemistry NASBMinskBelarus

Personalised recommendations