Advertisement

Reaction Orders of the Hydrogenation of Nitrate and Nitrite in Water over a Nickel Catalyst

  • Yukina Ogawa
  • Arata Sodeno
  • Miku Takatani
  • Tsutomu OsawaEmail author
Article
  • 1 Downloads

Abstract

The hydrogenations of nitrate and nitrite in water were investigated using a Raney Ni catalyst and reduced Ni catalyst. For determination of the reaction orders, reduced Ni is more appropriate than Raney Ni due to the fact that Raney Ni has an intrinsic hydrogen on its surface and is more readily oxidized during the reaction. Based on the reaction orders of the reactants, it was revealed that the adsorption of hydrogen gas on the Ni surface was weaker than those of nitrate and nitrite.

Graphic Abstract

Keywords

Hydrogenation Nitrate in water Reaction order Reduced nickel catalyst 

Notes

Acknowledgement

This work was partly supported by JSPS KAKENHI Grant Number JP19K05562.

Supplementary material

10562_2019_2945_MOESM1_ESM.doc (146 kb)
Supplementary material 1 (DOC 145 kb)

References

  1. 1.
    WHO (2017) Guidelines for drinking-water quality, 4th edn, incorporating the 1st addendum. BrazilGoogle Scholar
  2. 2.
    Barrabés N, Sá J (2011) Appl Catal B Environ 104:1CrossRefGoogle Scholar
  3. 3.
    Mohseni-Bandpi A, Elliott DJ, Zazouli MA (2013) J Environ Health Sci Eng 11:35CrossRefGoogle Scholar
  4. 4.
    Vorlop K-D, Tacke T (1989) Chem Ing Tech 61(10):836–837CrossRefGoogle Scholar
  5. 5.
    Pintar A, Batista J, Arcon I, Kodre A (1998) Stud Surf Sci Catal 118:127–136CrossRefGoogle Scholar
  6. 6.
    Prusse U, Vorlop KD (2001) J Mol Catal A Chem 173:313–328CrossRefGoogle Scholar
  7. 7.
    Yoshinaga Y, Akita T, Mikami I, Okuhara T (2002) J Catal 207:37–45CrossRefGoogle Scholar
  8. 8.
    Mikami I, Sakamoto Y, Yoshinaga Y, Okuhara T (2003) Appl Catal B Environ 44:79–86CrossRefGoogle Scholar
  9. 9.
    Sa J, Berger T, Foettinger K, Riss A, Anderson JA, Vinek H (2005) J Catal 234:282–291CrossRefGoogle Scholar
  10. 10.
    Wang Y, Qu J, Liu H, Wu R (2006) Chin Sci Bull 51:1431–1438Google Scholar
  11. 11.
    Zhang FX, Miao S, Yang YL, Zhang X, Chen JX, Guan NJ (2008) J Phys Chem C 112:7665CrossRefGoogle Scholar
  12. 12.
    Xu Z, Chen L, Shao Y, Yin D, Zheng S (2009) Ind Eng Chem Res 48:8356–8363CrossRefGoogle Scholar
  13. 13.
    Nakayama N, Takahashi M (2015) Catal Lett 145:1756–1763CrossRefGoogle Scholar
  14. 14.
    Daub K, Emig G, Chollier MJ, Callant M, Dittmeyer R (1999) Chem Eng Sci 54:1577–1582CrossRefGoogle Scholar
  15. 15.
    Strukul G, Gavagnin R, Pinna F, Modaferri E, Perathoner S, Centi G, Marella M, Tomaselli M (2000) Catal Today 55:139–149CrossRefGoogle Scholar
  16. 16.
    Berndt H, Monnich I, Lucke B, Menzel M (2001) Appl Catal B Environ 30:111–122CrossRefGoogle Scholar
  17. 17.
    Roveda A, Benedetti A, Pinna F, Strukul G (2003) Inorg Chim Acta 349:203–208CrossRefGoogle Scholar
  18. 18.
    Costa AO, Ferreira LS, Passos FB, Maia MP, Peixoto FC (2012) Appl Catal A Gen 445:26–34CrossRefGoogle Scholar
  19. 19.
    Chen H-Y, Lo S-L, Ou H-H (2013) Appl Catal B Environ 142–143:65–71CrossRefGoogle Scholar
  20. 20.
    Rocha EPA, Passos FB, Peixoto FC (2014) Ind Eng Chem Res 53:8726–8734CrossRefGoogle Scholar
  21. 21.
    Hirayama J, Kamiya Y (2018) Catal Sci Technol 8:4985–4993CrossRefGoogle Scholar
  22. 22.
    Witonska I, Karski S, Rogowski J, Krawczyk N (2008) J Mol Catal A Chem 287:87–94CrossRefGoogle Scholar
  23. 23.
    Marchesini FA, Gutierrez LB, Querini CA, Miro EE (2010) Chem Eng J 159:203–211CrossRefGoogle Scholar
  24. 24.
    Krawczyk N, Witonska I, Krolak A, Frajtak M, Karski S (2011) Rev Roum Chim 56:595–600Google Scholar
  25. 25.
    Marchesini FA, Picard N, Miro EE (2012) Catal Commun 21:9–13CrossRefGoogle Scholar
  26. 26.
    D’Arino M, Pinna F, Strukul G (2004) Appl Catal B Environ 53:161–168CrossRefGoogle Scholar
  27. 27.
    Marchesini FA, Irusta S, Querini C, Miro E (2008) Catal Commun 9:1021–1026CrossRefGoogle Scholar
  28. 28.
    Witonska I, Karski S, Goluchowska J (2007) Kinet Catal 48:823–828CrossRefGoogle Scholar
  29. 29.
    Huo X, Van Hoomissen DJ, Liu J, Vyas S, Strathmann TJ (2017) Appl Catal B Environ 211:188–198CrossRefGoogle Scholar
  30. 30.
    Shukla A, Pande JV, Bansiwal A, Osiceanu P, Biniwale RB (2009) Catal Lett 131:451–457CrossRefGoogle Scholar
  31. 31.
    Mikami I, Yoshinaga Y, Okuhara T (2004) Appl Catal B 49:173–179CrossRefGoogle Scholar
  32. 32.
    Mikami I, Kitayama R, Okuhara T (2006) Appl Catal A Gen 297:24–30CrossRefGoogle Scholar
  33. 33.
    Smith HA, Chadwell AJ, Kirslis SS (1955) J Phys Chem 59:820–822CrossRefGoogle Scholar
  34. 34.
    Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) Surf Sci 600:1771–1779CrossRefGoogle Scholar
  35. 35.
    Mo Y, Li D, Chen Y, Cao B, Hou B, Zhu Z, Li J (2016) RSC Adv 6:75293–75298CrossRefGoogle Scholar
  36. 36.
    Manthiram A (2017) ACS Cent Sci 3:1063–1069CrossRefGoogle Scholar
  37. 37.
    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257:2717–2730CrossRefGoogle Scholar
  38. 38.
    Devred F (2004) Delft University Press, DelftGoogle Scholar
  39. 39.
    Yamashita S, Yamamoto Y, Katayama M, Inada Y (2015) Bull Chem Soc Jpn 88:1629–1635CrossRefGoogle Scholar
  40. 40.
    Kefeli LM, Sevast’yanov IG (1952) Dokl Akad Nauk SSSR 83:863–864Google Scholar
  41. 41.
    Wood GC, Stott FH, Forrest JE (1977) Werkst Korros 28:395–404CrossRefGoogle Scholar
  42. 42.
    Okamoto Y, Nitta Y, Imanaka T, Teranishi S (1980) J Catal 64:397–404CrossRefGoogle Scholar
  43. 43.
    Okamoto Y, Fukino K, Imanaka T, Teranishi S (1982) J Catal 74:173–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yukina Ogawa
    • 1
  • Arata Sodeno
    • 1
  • Miku Takatani
    • 1
  • Tsutomu Osawa
    • 1
    Email author
  1. 1.Graduate School of Science and Engineering for ResearchUniversity of ToyamaGofukuJapan

Personalised recommendations