Molecular Oxygen Activation on Suspended Doped Cerium(IV) Oxide Particles in Molten Chloride Salts

  • Behzad Tangeysh
  • Horia Metiu
  • Michael J. Gordon
  • Eric W. McFarlandEmail author


Suspensions of cerium(IV) oxide (CeO2) particles in molten chloride salts were found to be active for molecular oxygen activation when doped with the larger Lanthanides, gadolinium (Gd), praseodymium, (Pr), and samarium, (Sm). The activity for O2 oxidation of gas phase CO on suspended doped ceria in molten mixtures of LiCl–LiBr–KBr and NaCl–KCl is significantly higher than undoped ceria or the salt mixtures alone in the temperature ranges of 350–600 °C, and 700–800 °C, respectively. Surface tension measurements show that the solid doped ceria particles suspended in the melt are contacting the gas–liquid interface of the bubbles. The activity for O2 oxidation of liquid phase MgCl2 in molten MgCl2–KCl to produce Cl2 and solid MgO was also observed to be significantly increased on suspended CeO2 doped with 5 wt% or 10 wt% Gd. The rates of oxidation were observed to increase with catalyst loading.

Graphic Abstract


Molten chloride salts Doped ceria catalyst Oxygen activation CO oxidation Cl2 production 



This work was supported by BASF through the California Research Alliance Program (CARA). The authors are grateful for the indispensable technical assistance of Mr. Richard Bock of the UCSB Chemistry Department who prepared all the quartz reactor components and their modifications. The authors also acknowledge the technical assistance of Mr. Steven Bustillos and Mr. Joshua Rodriguez.

Supplementary material

10562_2019_2942_MOESM1_ESM.docx (420 kb)
Supplementary material 1 (DOCX 420 kb) Additional figures of control studies and thermodynamic plots of the reactions. This material is available free of charge via the Internet


  1. 1.
    Weinstock IA, Schreiber RE, Neumann R (2018) Dioxygen in polyoxometalate mediated reactions. Chem Rev 118:2680–2717CrossRefGoogle Scholar
  2. 2.
    Romero E, Gómez Castellanos JR, Gadda G et al (2018) Same substrate, many reactions: oxygen activation in flavoenzymes. Chem Rev 118:1742–1769CrossRefGoogle Scholar
  3. 3.
    Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 1056:2329–2364CrossRefGoogle Scholar
  4. 4.
    Shi Z, Zhang C, Tang C et al (2012) Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem Soc Rev 418:3381–3430CrossRefGoogle Scholar
  5. 5.
    Sheldon RA, Dakka J (1994) Heterogeneous catalytic oxidations in the manufacture of fine chemicals. Catal Today 19:215–245CrossRefGoogle Scholar
  6. 6.
    Hayaishi O (1974) General properties and biological functions of oxygenases. In: Hayaishi O (ed) Molecular mechanisms of oxygen activation. Academic Press, New York, pp 1–28Google Scholar
  7. 7.
    Neumann R, Dahan M (1997) A ruthenium-substituted polyoxometalate as an inorganic dioxygenase for activation of molecular oxygen. Nature 388:353CrossRefGoogle Scholar
  8. 8.
    Widmann D, Behm RJ (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47:740–749CrossRefGoogle Scholar
  9. 9.
    Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058CrossRefGoogle Scholar
  10. 10.
    Kholdeeva OA, Zalomaeva OV (2016) Recent advances in transition-metal-catalyzed selective oxidation of substituted phenols and methoxyarenes with environmentally benign oxidants. Coord Chem Rev 306:302–330CrossRefGoogle Scholar
  11. 11.
    Neumann R (2010) Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg Chem 49:3594–3601CrossRefGoogle Scholar
  12. 12.
    Haruta M, Tsubota S, Kobayashi T et al (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192CrossRefGoogle Scholar
  13. 13.
    Daniel W, Jürgen BR (2011) Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew Chem Int Ed 50:10241–10245CrossRefGoogle Scholar
  14. 14.
    McFarland EW, Metiu H (2013) Catalysis by doped oxides. Chem Rev 113:4391–4427CrossRefGoogle Scholar
  15. 15.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520CrossRefGoogle Scholar
  16. 16.
    Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113:3949–3985CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278CrossRefGoogle Scholar
  18. 18.
    Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion 129:63–94CrossRefGoogle Scholar
  19. 19.
    Ji H, Mizugaki T, Ebitani K et al (2002) Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst. Tetrahedron Lett 43:7179–7183CrossRefGoogle Scholar
  20. 20.
    Sutradhar N, Sinhamahapatra A, Pahari S et al (2011) Facile low-temperature synthesis of ceria and samarium-doped ceria nanoparticles and catalytic allylic oxidation of cyclohexene. J Phys Chem C 115:7628–7637CrossRefGoogle Scholar
  21. 21.
    Shen HC, Weng HS (1990) Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst. Ind Eng Chem Res 29:713–719CrossRefGoogle Scholar
  22. 22.
    Vivier L, Duprez D (2010) Ceria-based solid catalysts for organic chemistry. Chemsuschem 3:654–678CrossRefGoogle Scholar
  23. 23.
    de Leitenburg C, Goi D, Primavera A et al (1996) Wet oxidation of acetic acid catalyzed by doped ceria. Appl Catal B 11:L29–L35CrossRefGoogle Scholar
  24. 24.
    Yao C-S, Weng H-S (1998) Liquid-phase cooxidation of cyclohexane and cyclohexanone over supported cerium oxide catalysts. Ind Eng Chem Res 37:2647–2653CrossRefGoogle Scholar
  25. 25.
    Silva AMT, Marques RRN, Quinta-Ferreira RM (2004) Catalysts based in cerium oxide for wet oxidation of acrylic acid in the prevention of environmental risks. Appl Catal B 47:269–279CrossRefGoogle Scholar
  26. 26.
    Sundermeyer W (1965) Fused salts and their use as reaction media. Angew Chem Int Ed 4:222–238CrossRefGoogle Scholar
  27. 27.
    Villadsen J, Livejerg H (1978) Supported liquid-phase catalysts. Catal Rev 17:203–272CrossRefGoogle Scholar
  28. 28.
    Wei Y, Wang H, He F et al (2007) CeO2 as the oxygen carrier for partial oxidation of methane to synthesis gas in molten salts: thermodynamic analysis and experimental investigation. J Nat Gas Chem 16:6–11CrossRefGoogle Scholar
  29. 29.
    Gärtner CA, van Veen AC, Lercher JA (2014) Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts. J Am Chem Soc 136:12691–12701CrossRefGoogle Scholar
  30. 30.
    Ruthven DM, Kenney CN (1967) The kinetics of oxygen absorption in molten salts containing cuprous chloride. Chem Eng Sci 22:1561–1570CrossRefGoogle Scholar
  31. 31.
    Sada E, Katoh S, Beniko H et al (1980) Solubility of carbon dioxide in molten salts. J Chem Eng Data 25:45–47CrossRefGoogle Scholar
  32. 32.
    Kristoffersen HH, Metiu H (2015) Molten LiCl layer supported on MgO: its possible role in enhancing the oxidative dehydrogenation of ethane. J Phys Chem C 119:8681–8691CrossRefGoogle Scholar
  33. 33.
    Derk AR, Moore GM, Sharma S et al (2014) Catalytic dry reforming of methane on ruthenium-doped ceria and ruthenium supported on ceria. Top Catal 57(1):118–124CrossRefGoogle Scholar
  34. 34.
    Sharma S, Hu Z, Zhang P et al (2011) CO2 methanation on Ru-doped ceria. J Catal 278:297–309CrossRefGoogle Scholar
  35. 35.
    Upham DC, Derk AR, Sharma S et al (2015) CO2 methanation by Ru-doped ceria: the role of the oxidation state of the surface. Catal Sci Technol 5:1783–1791CrossRefGoogle Scholar
  36. 36.
    Pradhan S, Upham DC, Metiu H et al (2016) Partial oxidation of propane with CO2 on Ru doped catalysts. Catal Sci Technol 6:5483–5493CrossRefGoogle Scholar
  37. 37.
    Su S, Mannini D, Metiu H et al (2018) Chlorine production by HCl oxidation in a molten chloride salt catalyst. Ind Eng Chem Res 57:7795–7801CrossRefGoogle Scholar
  38. 38.
    Saito Y, Yoshida H, Yokoyama T et al (1978) 2-Butanol vapor adsorption and the accompanying changes in surface tension and surface composition of an In-Sn liquid alloy system. J Colloid Interface Sci 66:440–446CrossRefGoogle Scholar
  39. 39.
    Villalón T., Su S., Pal U. (2016) Surface properties of molten fluoride-based salts. In: Reddy RG, Chaubal P, Pistorius PC, Pal U (eds) Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, ChamGoogle Scholar
  40. 40.
    Ibragimova LB (1991) Recommended rate constants of CO + O2-reversible- CO2 + O reactions. Khim Fiz 10:307–310 (in Russian)Google Scholar
  41. 41.
    Wilkes MF, Hayden P, Bhattacharya AK (2003) Catalytic studies on ceria lanthana solid solutions II. Oxidation of carbon monoxide. J Catal 219:295–304CrossRefGoogle Scholar
  42. 42.
    Polychronopoulou K, Zedan AF, Katsiotis MS et al (2017) Rapid microwave assisted sol-gel synthesis of CeO2 and CexSm1−xO2 nanoparticle catalysts for CO oxidation. Mol Catal 428:41–55CrossRefGoogle Scholar
  43. 43.
    Acharya SA, Gaikwad VM, D’Souza SW et al (2014) Gd/Sm dopant-modified oxidation state and defect generation in nano-ceria. Solid State Ion 260:21–29CrossRefGoogle Scholar
  44. 44.
    Smirnov MV, Stepanov VP (1982) Density and surface tension of molten alkali halides and their binary mxitures. Electrochim Acta 27:1551–1563CrossRefGoogle Scholar
  45. 45.
    Sato Y, Ejima T, Fukasawa M et al (1990) Surface tensions of molten alkali-metal halides. J Phys Chem 94:1991–1996CrossRefGoogle Scholar
  46. 46.
    Tanvir S, Qiao L (2012) Surface tension of nanofluid-type fuels containing suspended nanomaterials. Nanoscale Res Lett 7:226CrossRefGoogle Scholar
  47. 47.
    Harikrishnan AR, Dhar P, Agnihotri PK et al (2017) Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids. Eur Phys J E 40:53CrossRefGoogle Scholar
  48. 48.
    Zhang Z, Lu X, Wang T et al (2014) The dehydration of MgCl2·6H2O in MgCl2·6H2O–KCl–NH4Cl system. J Anal Appl Pyrolysis 110:248–253CrossRefGoogle Scholar
  49. 49.
    Huang Q, Lu G, Wang J et al (2011) Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O. J Anal Appl Pyrolysis 91:159–164CrossRefGoogle Scholar
  50. 50.
    Ding Y, Zhang G, Wu H et al (2001) Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem Mater 13:435–440CrossRefGoogle Scholar
  51. 51.
    Bilinski H, Matković B, Mažuranić C et al (1984) The formation of magnesium oxychloride phases in the systems MgO-MgCl2-H2O and NaOH-MgCl2-H2O. J Am Ceram Soc 67:266–269CrossRefGoogle Scholar
  52. 52.
    Kumari L, Li WZ, Vannoy CH et al (2009) Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceram Int 35:3355–3364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Behzad Tangeysh
    • 1
  • Horia Metiu
    • 2
  • Michael J. Gordon
    • 1
  • Eric W. McFarland
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations