Advertisement

The Effect of Ceria Content on the Acid–Base and Catalytic Characteristics of ZrO2–CeO2 Oxide Compositions in the Process of Ethanol to n-Butanol Condensation

  • Nina V. VlasenkoEmail author
  • Pavlo I. Kyriienko
  • Olena I. Yanushevska
  • Karina V. Valihura
  • Sergii O. Soloviev
  • Peter E. Strizhak
Article
  • 20 Downloads

Abstract

Ethanol conversion into n-butanol was performed over ZrO2–CeO2 mixed oxide catalysts. The effect of ceria content on the acid–base and catalytic properties of ZrO2–CeO2 compositions has been studied. The introduction of CeO2 additives into zirconia stabilizes the tetragonal phase of ZrO2 leading to an increase in basicity of the samples and, as a result, increases the activity of catalysts towards n-butanol. The highest ethanol conversion, selectivity and the rate of n-butanol formation were obtained over the ZrO2–CeO2 sample with 10% of ceria, which exhibited the highest concentration and strength of base sites. This sample consists of a solid solution of ZrO2–CeO2, whereas at higher concentrations of additive, CeO2 forms an individual phase.

Graphic Abstract

Keywords

Guerbet condensation n-Butanol Zirconia Ceria Acid–base properties Phase composition 

Notes

Acknowledgements

The authors are grateful to Dr. V.L. Struzhko for the synthesis of ZrO2–CeO2 samples.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Posada JA, Patel AD, Roes A et al (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499.  https://doi.org/10.1016/j.biortech.2012.09.058 Google Scholar
  2. 2.
    Mandegari M, Farzad S, Görgens J (2017) Recent trends on techno-economic assessment (TEA) of sugarcane biorefineries. Biofuel Res J 4(3):704–712.  https://doi.org/10.18331/BRJ2017.4.3.7 Google Scholar
  3. 3.
    Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090.  https://doi.org/10.1021/cs4011343 Google Scholar
  4. 4.
    Sun Z, Vasconcelos AC, Bottari G et al (2017) Efficient catalytic conversion of ethanol to 1-butanol via the guerbet reaction over copper- and nickel-doped porous. ACS Sustain Chem Eng 5(2):1738–1746.  https://doi.org/10.1021/acssuschemeng.6b02494 Google Scholar
  5. 5.
    Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3(7):1588–1600.  https://doi.org/10.1021/cs400292f Google Scholar
  6. 6.
    Kolesinska B, Fraczyk J, Binczarski M et al (2019) Butanol synthesis routes for biofuel production: trends and perspectives. Materials 12:350.  https://doi.org/10.3390/ma12030350 Google Scholar
  7. 7.
    Uyttebroek M, van Hecke W, Vanbroekhoven K (2015) Sustainability metrics of 1-butanol. Catal Today 239(1):7–10.  https://doi.org/10.1016/j.cattod.2013.10.094 Google Scholar
  8. 8.
    Wu X, Fang G, Tong Y et al (2018) Catalytic upgrading of ethanol to n-butanol: progress in catalyst development. Chem Sus Chem 11(1):71–85.  https://doi.org/10.1002/cssc.201701590 Google Scholar
  9. 9.
    Gabriëls D, Hernández WY, Sels B et al (2015) Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catal Sci Technol 5(8):3876–3902.  https://doi.org/10.1039/C5CY00359H Google Scholar
  10. 10.
    Galadima A, Muraza O (2015) Catalytic upgrading of bioethanol to fuel grade biobutanol: a review. Ind Eng Chem Res 54(29):7181–7194.  https://doi.org/10.1021/acs.iecr.5b01443 Google Scholar
  11. 11.
    Cimino S, Lisi L, Romanucci S (2018) Catalysts for conversion of ethanol to butanol: effect of acid-base and redox properties. Catal Today 304:58–63.  https://doi.org/10.1016/j.cattod.2017.08.035 Google Scholar
  12. 12.
    Kozlowski JT, Davis RJ (2013) Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem 22(1):58–64.  https://doi.org/10.1016/S2095-4956(13)60007-8 Google Scholar
  13. 13.
    Kozlowski JT, Behrens M, Schlögl R, Davis RJ (2013) Influence of the precipitation method on acid–base-catalyzed reactions over Mg–Zr mixed oxides. Chem Cat Chem 5(7):1989–1997.  https://doi.org/10.1002/cctc.201200833 Google Scholar
  14. 14.
    Tanabe K, Yamaguchi T (1994) Acid-base bifunctional catalysis by ZrO2 and its mixed oxides. Catal Today 20(2):185–198.  https://doi.org/10.1016/0920-5861(94)80002-2 Google Scholar
  15. 15.
    Vlasenko NV, Kyriienko PI, Valihura KV et al (2019) Effect of modifying additives on the catalytic properties of zirconium dioxide in the conversion of ethanol into 1-butanol. Theor Exp Chem 55(1):43–49.  https://doi.org/10.1007/s11237-019-09594-6 Google Scholar
  16. 16.
    Shutilov A, Simonov MN, Zaytseva YA et al (2013) Phase composition and catalytic properties of ZrO2 and CeO2-ZrO2 in the ketonization of pentanoic acid to 5-nonanone. Kinet Catal 54(2):184–192.  https://doi.org/10.1134/S0023158413020134 Google Scholar
  17. 17.
    Kochkin YN, Vlasenko NV, Struzhko VL et al (2016) Methanol carboxylation over zirconium dioxide: effect of catalyst phase composition on its acid-base spectrum and direction of catalytic transformations. Can J Chem Eng 94(4):745–751.  https://doi.org/10.1002/cjce.22435 Google Scholar
  18. 18.
    Albuquerque EM, Borges LEP, Fraga MA, Sievers C (2017) Relationship between acid-base properties and the activity of ZrO2-based catalysts for the Cannizzaro reaction of pyruvaldehyde to lactic acid. Chem Cat Chem 9(14):2675–2683.  https://doi.org/10.1002/cctc.201700305 Google Scholar
  19. 19.
    Di Monte R, Kaspar J (2005) Nanostructured CeO2–ZrO2 mixed oxides. J Mater Chem 15(6):633–648.  https://doi.org/10.1039/B414244F Google Scholar
  20. 20.
    Kašpar J, Fornasiero P (2003) Nanostructured materials for advanced automotive de-pollution catalysts. J Solid State Chem 171(1–2):19–29.  https://doi.org/10.1016/S0022-4596(02)00141-X Google Scholar
  21. 21.
    Zavodinsky VG, Chibisov AN (2006) Stability of cubic zirconia and of stoichiometric zirconia nanoparticles. Phys Solid State 48(2):343–368.  https://doi.org/10.1134/S1063783406020296 Google Scholar
  22. 22.
    Ma Z-Y, Yang C, Wei W et al (2005) Surface properties and CO adsorption on zirconia polymorphs. J Mol Catal A 227(1–2):119–124.  https://doi.org/10.1016/j.molcata.2004.10.017 Google Scholar
  23. 23.
    Madier Y, Descorme C, Le Govic AM et al (1999) Oxygen mobility in CeO2 and CexZr(1–x)O2 compounds: study by CO transient oxidation and 18O/16O isotopic exchange. J Phys Chem B 103(50):10999–11006.  https://doi.org/10.1021/jp991270a Google Scholar
  24. 24.
    Sergent N, Lamonier JF, Aboukais A (2000) Electron paramagnetic resonance in combination with the thermal analysis, X-ray diffraction, and raman spectroscopy to follow the structural properties of ZrxCe1-xO2 solid systems and precursors. Chem Mater 12(12):3830–3835.  https://doi.org/10.1021/cm000315d Google Scholar
  25. 25.
    Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116(10):5987–6041.  https://doi.org/10.1021/acs.chemrev.5b00603 Google Scholar
  26. 26.
    Zhang X, Cheng X, Ma Ch et al (2018) Effect of ZrO2 support on Cu/Fe2O3-CeO2/ZrO2 catalyst for NO removal by CO using a rotary reactor. Catal Sci Technol 8(21):5623–5631.  https://doi.org/10.1039/C8CY01546E Google Scholar
  27. 27.
    Fornasiero P, Ranga Rao G, Kašpar J et al (1998) Reduction of NO by CO over Rh/CeO2–ZrO2 catalysts: evidence for a support-promoted catalytic activity. J Catal 175(2):269–279.  https://doi.org/10.1006/jcat.1998.1999 Google Scholar
  28. 28.
    Ning P, Song Zh, Li H et al (2015) Selective catalytic reduction of NO with NH3 over CeO2–ZrO2–WO3 catalysts prepared by different methods. Appl Surf Sci 332:130–137.  https://doi.org/10.1016/j.apsusc.2015.01.118 Google Scholar
  29. 29.
    Putluru SSR, Riisager A, Fehrmann R (2009) The effect of acidic and redox properties of V2O5/CeO2–ZrO2 catalysts in selective catalytic reduction of NO by NH3. Catal Lett 133(3–4):370–375.  https://doi.org/10.1007/s10562-009-0176-8 Google Scholar
  30. 30.
    Haneda M, Taguchi R, Hattori M (2015) Influence of particle morphology on catalytic performance of CeO2/ZrO2 for soot oxidation. J Ceram Soc Jpn 123(1437):414–418.  https://doi.org/10.2109/jcersj2.123.414 Google Scholar
  31. 31.
    Atzori L, Rombi E, Meloni D et al (2019) CO and CO2 Co-methanation on Ni/CeO2-ZrO2 soft-templated catalysts. Catalysts 9(5):415.  https://doi.org/10.3390/catal9050415 Google Scholar
  32. 32.
    Kambolis A, Matralis H, Trovarelli A, Papadopoulou Ch (2010) Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl Catal A 377(1–2):16–26.  https://doi.org/10.1016/j.apcata.2010.01.013 Google Scholar
  33. 33.
    Wolfbeisser A, Sophiphun O, Bernardi J et al (2016) Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal Today 277(2):234–245.  https://doi.org/10.1016/j.cattod.2016.04.025 Google Scholar
  34. 34.
    Palikanon T, Laosiripojana N, Assabumrungrat S, Charojrochkul S (2006) Hydrogen production from methane steam reforming over Ni on high surface area CeO2 and CeO2-ZrO2 supports synthesized by surfactant-assisted method. Songklanakarin J Sci Technol 28(6): 1238–1249. http://rdo.psu.ac.th/sjstweb/journal/28-6/10-Methane.pdf
  35. 35.
    Palma V, Ruocco C, Meloni E, Ricca A (2017) Renewable hydrogen from ethanol reforming over CeO2-SiO2 based catalysts. Catalysts 7:226.  https://doi.org/10.3390/catal7080226 Google Scholar
  36. 36.
    Palma V, Ruocco C, Ricca A (2016) Ceramic foams coated with PteNi/CeO2-ZrO2 for bioethanol steam reforming. Int J Hydrog Energy 41(27):11526–11536.  https://doi.org/10.1016/j.ijhydene.2016.04.028 Google Scholar
  37. 37.
    Palma V, Ruocco C, Ricca A (2016) Low-temperature steam reforming of raw bio-ethanol over ceria-zirconia supported catalysts. Chem Eng Trans 52:193–198.  https://doi.org/10.3303/CET1652033 Google Scholar
  38. 38.
    Perdomo Rodrigues C, da Costa Zonetti P, Gorenstin Appel L (2017) Chemicals from ethanol: the acetone synthesis from ethanol employing Ce0.75Zr0.25O2, ZrO2 and Cu/ZnO/Al2O3. Chem Cent J 11: 30.  https://doi.org/10.1186/s13065-017-0249-5
  39. 39.
    Birot A, Epron F, Descorme C, Duprez D (2008) Ethanol steam reforming over Rh/CexZr1−xO2 catalysts: impact of the CO–CO2–CH4 interconversion reactions on the H2 production. Appl Catal B 79(1):17–25.  https://doi.org/10.1016/j.apcatb.2007.10.002 Google Scholar
  40. 40.
    Biswas P, Kunzru D (2007) Steam reforming of ethanol for production of hydrogen over Ni/CeO2–ZrO2 catalyst: effect of support and metal loading. Int J Hydrog Energy 32(8):969–980.  https://doi.org/10.1016/j.ijhydene.2006.09.031 Google Scholar
  41. 41.
    Waseda Y, Matsubara E, Shinoda K (2011) X-ray diffraction crystallography. Springer, Berlin. ISBN 978-3-642-16634-1Google Scholar
  42. 42.
    Toraya H, Yoshimura M, Somiya S (1984) Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 67(6):119–121.  https://doi.org/10.1111/j.1151-2916.1984.tb19715.x Google Scholar
  43. 43.
    Masudi A, Muraza O (2018) Zirconia-based nanocatalysts in heavy oil upgrading: a mini review. Energy Fuel 32(2):2840–2854.  https://doi.org/10.1021/acs.energyfuels.7b03264 Google Scholar
  44. 44.
    Viinikainen T, Ronkkonen H, Bradshaw H et al (2009) Acidic and basic surface sites of zirconia-based biomass gasification gas clean-up catalysts. Appl Catal A 362(1–2):169–177.  https://doi.org/10.1016/j.apcata.2009.04.037 Google Scholar
  45. 45.
    Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A (1998) Interaction of carbon dioxide with the surface of zirconia polymorphs. Langmuir 14(13):3556–3564.  https://doi.org/10.1021/la970856q Google Scholar
  46. 46.
    Panchenko VN, Paukshtis EA, Murzin DY, Simakova IL (2017) Solid base assisted n-pentanol coupling over VIII group metals: elucidation of the guerbet reaction mechanism by DRIFTS. Ind Eng Chem Res 56(45):13310–13321.  https://doi.org/10.1021/acs.iecr.7b01853 Google Scholar
  47. 47.
    Ho CR, Shylesh S, Bell AT (2016) Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite. ACS Catal 6(2):939–948.  https://doi.org/10.1021/acscatal.5b02672 Google Scholar
  48. 48.
    Wang R, Lan L, Gong M-C, Chen Y-Q (2016) Catalytic combustion of gasoline particulate soot over CeO2-ZrO2 catalysts. Acta Phys-Chim Sin 32(7):1747–1757.  https://doi.org/10.3866/pku.whxb201605103 Google Scholar
  49. 49.
    Olcese R, Bettahar MM (2013) Thermodynamics conditions for Guerbet ethanol reaction. MATEC Web Conf 3:01060.  https://doi.org/10.1051/matecconf/20130301060 Google Scholar
  50. 50.
    Riittonen T, Toukoniitty E, Madnani DK et al (2012) One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide—the effect of the active metal on the selectivity. Catalysts 2:68–84.  https://doi.org/10.3390/catal2010068 Google Scholar
  51. 51.
    Jordison TL, Peereboom L, Miller DJ (2016) Impact of water on condensed phase ethanol guerbet reactions. Ind Eng Chem Res 55(23):6579–6585.  https://doi.org/10.1021/acs.iecr.6b00700 Google Scholar
  52. 52.
    Zaytseva YA, Panchenko VN, Simonov MN et al (2013) Effect of gas atmosphere on catalytic behaviour of zirconia, ceria and ceria–zirconia catalysts in valeric acid ketonization. Top Catal 56(9–10):846–855.  https://doi.org/10.1007/s11244-013-0045-y Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.L.V. Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine
  2. 2.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KievUkraine

Personalised recommendations