Advertisement

Graphene Oxide-Supported Ionic Liquid Phase Catalyzed Synthesis of 3,4-Dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-diones

  • Shivanand Gajare
  • Audumbar Patil
  • Dolly Kale
  • Prakash Bansode
  • Pradnya Patil
  • Gajanan RashinkarEmail author
Article
  • 3 Downloads

Abstract

Graphene oxide-supported ionic liquid phase catalyst ([GrFemBenzImi]OH) has been prepared by covalent grafting of 1-N-ferrocenylmethyl benzimidazole in the matrix of functionalized graphene oxide followed by anion metathesis reaction. [GrFemBenzImi]OH has been characterized by fourier transform infrared (FT-IR) spectroscopy, fourier transform Raman (FT-Raman spectroscopy), CP-MAS 13C NMR spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area. [GrFemBenzImi]OH served as a robust heterogeneous catalyst for the synthesis of bioactive 3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-diones by reaction of formaldehyde, 2-hydroxy-1,4-naphthoquinone with structurally diverse aromatic anilines. Recyclability experiments were executed successfully for six consecutive runs.

Graphic Abstract

Keywords

Graphene oxide Supported ionic liquid phase catalyst Ferrocene 3,4-Dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-diones Reusability 

Notes

Acknowledgements

We gratefully acknowledge Indian Institute of Bombay (IITB), North-Estern Hill University Shillong (NEHU), Indian Institute of Technology, Madras (IITM) for providing spectral facilities and Shivaji University Kolhapur for providing financial assistance and Golden Jubilee Research Fellowship (GJRF).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2934_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. 1.
    Xin B, Hao J (2014) Chem Soc Rev 43:7171CrossRefGoogle Scholar
  2. 2.
    Wan L, Cai C (2012) Catal Lett 142:1134CrossRefGoogle Scholar
  3. 3.
    Nejad MS, Sheibani H (2018) Catal Lett 148:125CrossRefGoogle Scholar
  4. 4.
    Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Top Catal 40:91CrossRefGoogle Scholar
  5. 5.
    Gautam P, Upadhyay PR, Srivastava V (2019) Catal Lett 149:1464CrossRefGoogle Scholar
  6. 6.
    Gilet A, Quettier C, Wiatz V, Bricout H, Ferreira M, Rousseau C, Monflier E, Tilloy S (2018) Green Chem 20:1152CrossRefGoogle Scholar
  7. 7.
    Riisager A, Eriksen KM, Wasserscheid P, Fehrmann R (2003) Catal Lett 90:149CrossRefGoogle Scholar
  8. 8.
    Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) J Am Chem Soc 124:12932CrossRefGoogle Scholar
  9. 9.
    Steinrück H-P, Wasserscheid P (2015) Catal Lett 145:380CrossRefGoogle Scholar
  10. 10.
    Okamoto M, Kiya H, Matsumura A, Suzuki E (2008) Catal Lett 123:72CrossRefGoogle Scholar
  11. 11.
    Rodriguez-Perez L, Teuma E, Falqui A, Gomez M, Serp P (2008) Chem Commun 35:4201–4203CrossRefGoogle Scholar
  12. 12.
    Jagadale M, Kale D, Salunkhe R, Rajmane M, Rashinkar G (2018) J Mol Liq 265:525CrossRefGoogle Scholar
  13. 13.
    Pamin K, Jachimska B, Onik K, Połtowicz J, Grabowski R (2009) Catal Lett 127:167CrossRefGoogle Scholar
  14. 14.
    Mohammadi R, Esmati S, Gholamhosseini-Nazari M, Teimuri-Mofrad R (2019) J Mol Liq 275:523CrossRefGoogle Scholar
  15. 15.
    Kumar LM, Mishra P, Bhat BR (2019) Catal Lett 149:1118CrossRefGoogle Scholar
  16. 16.
    Chen Y, Tan C, Zhang H, Wang L (2015) Chem Soc Rev 44:2681CrossRefGoogle Scholar
  17. 17.
    Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Chem Rev 116:5464CrossRefGoogle Scholar
  18. 18.
    Ghosh D, Dhibar S, Dey A, Mukherjee S, Joardar N, Sinha Babu SP, Dey B (2019) J Mol Liq 282:1CrossRefGoogle Scholar
  19. 19.
    Rowley-Neale SJ, Randviir EP, Abo Dena AS, Banks CE (2018) Appl Mater Today 10:218CrossRefGoogle Scholar
  20. 20.
    Huang X, Qi X, Boey F, Zhang H (2012) Chem Soc Rev 41:666CrossRefGoogle Scholar
  21. 21.
    Fan X, Zhang G, Zhang F (2015) Chem Soc Rev 44:3023CrossRefGoogle Scholar
  22. 22.
    Kashefi S, Borghei SM, Mahmoodi NM (2019) J Mol Liq 276:153CrossRefGoogle Scholar
  23. 23.
    Asif M (2016) AJCPS 1:29CrossRefGoogle Scholar
  24. 24.
    Mathew BP, Kumar A, Sharma S, Shukla PK, Nath M (2010) Eur J Med Chem 45:1502CrossRefGoogle Scholar
  25. 25.
    Korotaev VY, Barkov AY, Matochkina EG, Kodess MI, Sosnovskikh VY (2014) Tetrahedron 70:5161CrossRefGoogle Scholar
  26. 26.
    Peters AT, Xisai M (1992) Dyes Pigm 20:291CrossRefGoogle Scholar
  27. 27.
    Dhakane VD, Gholap SS, Deshmukh UP, Chavan HV, Bandgar BP (2014) C R Chimie 17:431CrossRefGoogle Scholar
  28. 28.
    Zhang G-Y, Xiang Y, Guan Z, He Y-H (2017) Catal Sci Technol 7:1937CrossRefGoogle Scholar
  29. 29.
    Zhu X, Lee YR (2012) Bull Korean Chem Soc 33:3831CrossRefGoogle Scholar
  30. 30.
    Khanna G, Aggarwal K, Khurana JM (2015) RSC Adv 5:46448CrossRefGoogle Scholar
  31. 31.
    Shi D, Rong S, Dou G, Wang M (2010) J Comb Chem 12:25CrossRefGoogle Scholar
  32. 32.
    Ozturkcan SA, Turhan K, Turgut Z (2011) J Chem Soc Pak 33:939Google Scholar
  33. 33.
    Jagadale M, Salunkhe R, Kumbhar A, Gajare S, Rajmane M, Rashinkar G (2017) Appl Organomet Chem 31:e3576CrossRefGoogle Scholar
  34. 34.
    Gajare S, Jagadale M, Naikwade A, Bansode P, Rashinkar G (2019) Appl Organomet Chem 33:e4915CrossRefGoogle Scholar
  35. 35.
    Shinde S, Rashinkar G, Salunkhe R (2013) J Mol Liq 178:122CrossRefGoogle Scholar
  36. 36.
    Kurane R, Jadhav J, Khanapure S, Salunkhe R, Rashinkar G (2013) Green Chem 15:1849CrossRefGoogle Scholar
  37. 37.
    Kumbhar A, Kamble S, Jadhav S, Rashinkar G, Salunkhe R (2012) Catal Lett 142:1388CrossRefGoogle Scholar
  38. 38.
    Kurane R, Bansode P, Khanapure S, Kale D, Salunkhe R, Rashinkar G (2016) Catal Lett 146:2485CrossRefGoogle Scholar
  39. 39.
    Lindsay JK, Hauser CR (1957) J Org Chem 22:355CrossRefGoogle Scholar
  40. 40.
    Gao Y, Twamley B, Shreeve JM (2004) Inorg Chem 43:3406CrossRefGoogle Scholar
  41. 41.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar
  42. 42.
    Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) Nano Lett 7:3394CrossRefGoogle Scholar
  43. 43.
    Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771CrossRefGoogle Scholar
  44. 44.
    Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) J Mater Chem 16:155CrossRefGoogle Scholar
  45. 45.
    Naeimi H, Ansarian Z (2017) Inorg Chim Acta 466:417CrossRefGoogle Scholar
  46. 46.
    Lee CY, Le QV, Kim C, Kim SY (2015) Phys Chem Chem Phys 17:9369CrossRefGoogle Scholar
  47. 47.
    Naikwade A, Jagadale M, Kale D, Gajare S, Rashinkar G (2018) Catal Lett 148:3178CrossRefGoogle Scholar
  48. 48.
    Qiu X, Ueda M, Hu H, Sui Y, Zhang X, Wang L (2017) ACS Appl Mater Interfaces 9:33049CrossRefGoogle Scholar
  49. 49.
    Srivastava RKR, Xingjue W, Kumar V, Srivastava A, Singh VN (2014) J Alloys Compd 612:343CrossRefGoogle Scholar
  50. 50.
    Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Macromol Rapid Commun 31:281CrossRefGoogle Scholar
  51. 51.
    Alam SN, Sharma N, Kumar L (2017) Graphene 6:1CrossRefGoogle Scholar
  52. 52.
    Ahluwalia VK, Aggarwal R (2005) Comprehensive practical organic chemistry: preparation and quantitative analysis. Universities Press (India) Pvt Limited, HyderabadGoogle Scholar
  53. 53.
    Kumbhar A, Jadhav S, Shejwal R, Rashinkar G, Salunkhe R (2016) RSC Adv 6:19612CrossRefGoogle Scholar
  54. 54.
    Jiao L, Hu Y, Ju H, Wang C, Gao M-R, Yang Q, Zhu J, Yu S-H, Jiang H-L (2017) J Mater Chem A 5:23170CrossRefGoogle Scholar
  55. 55.
    Ai W, Zhou W, Du Z, Du Y, Zhang H, Jia X, Xie L, Yi M, Yu T, Huang W (2012) J Mater Chem 22:23439CrossRefGoogle Scholar
  56. 56.
    Gao Y, Hu G, Zhang W, Ma D, Bao X (2011) Dalton Trans 40:4542CrossRefGoogle Scholar
  57. 57.
    Dong Q, Zhuang X, Li Z, Li B, Fang B, Yang C, Xie H, Zhang F, Feng X (2015) J Mater Chem A 3:7767CrossRefGoogle Scholar
  58. 58.
    Paredes JI, Villar-Rodil S, Solı’s-Fernandez P, Mart’ınez-Alonso A, Tascon JMD (2009) Langmuir 25:5957CrossRefGoogle Scholar
  59. 59.
    Gupta S, Khanna G, Khurana JM (2016) Environ Chem Lett 14:559CrossRefGoogle Scholar
  60. 60.
    Togni A, Halterman RL (eds) (1998) Metallocenes. Wiley-VCH, WeinheimGoogle Scholar
  61. 61.
    Togni A, Hayashi T (eds) (1995) Ferrocenes: homogeneous catalysis, organic synthesis, material science. Wiley-VCH, WeinheimGoogle Scholar
  62. 62.
    Atkinson RC, Gibson VC, Long NJ (2004) Chem Soc Rev 33:313CrossRefGoogle Scholar
  63. 63.
    Barbaro P, Bianchini C, Gianbastini G, Parisel SL (2004) Coord Chem Rev 248:2131CrossRefGoogle Scholar
  64. 64.
    Siemeling U, Auch T-C (2005) Chem Soc Rev 34:584CrossRefGoogle Scholar
  65. 65.
    Colacot TJ (2001) Platin Met Rev 45:22Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shivanand Gajare
    • 1
  • Audumbar Patil
    • 1
  • Dolly Kale
    • 1
  • Prakash Bansode
    • 1
  • Pradnya Patil
    • 1
  • Gajanan Rashinkar
    • 1
    Email author
  1. 1.Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations