Advertisement

Highly Selective Hydrogenation of Furfural to Furan-2-ylmethanol over Zeolitic Imidazolate Frameworks-67-Templated Magnetic Cu–Co/C

  • Zhi-Xin Li
  • Xian-Yong WeiEmail author
  • Zheng Yang
  • Min Zhang
  • Xing-Long Meng
  • Shuo Niu
  • Di Zhang
  • Zhi-Min Zong
Article
  • 19 Downloads

Abstract

Highly selective hydrogenation of furfural to furan-2-ylmethanol (FM) in isopropanol was achieved over a novel magnetic Cu–Co/C derived from zeolitic imidazolate frameworks prepared by galvanic replacement reaction. Furfural conversion and FM selectivity (FMS) are 100% and 97.2%, respectively, at 200 °C. FMS was held around 95% after 5-times recycle of the Cu–Co/C. In addition, cinnamaldehyde was completely converted with 96.8% of phenylpropanol selectivity over the Cu–Co/C at 150 °C.

Graphic Abstract

Keywords

Furfural Cu–Co/C Selective hydrogenation Furan-2-ylmethanol Zeolitic imidazolate frameworks 

Notes

Acknowledgements

This work was supported by the Key Project of Joint Fund from the National Key Research and Development Program of China (Grant 2018YFB0604602) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with Ethical Standards

Conflicts of interest

Each contributing author has no conflict of interest.

Supplementary material

10562_2019_2925_MOESM1_ESM.docx (9.5 mb)
Supplementary material 1 (DOCX 9747 kb)

References

  1. 1.
    Mariscal R, Torres PM, Ojeda M, Sadaba I, Granados ML (2016) Energy Environ Sci 9:1144–1189CrossRefGoogle Scholar
  2. 2.
    Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513CrossRefGoogle Scholar
  3. 3.
    Gong WB, Chen C, Zhang HM, Wang GZ, Zhao HJ (2018) Catal Sci Technol 8:5506–5514CrossRefGoogle Scholar
  4. 4.
    Zhou M, Li J, Wang K, Xia H, Xu J, Jiang J (2017) Fuel 202:1–11CrossRefGoogle Scholar
  5. 5.
    Ishida T, Kume K, Kinjo K, Honma T, Nakada K, Ohashi H, Yokoyama T, Hamasaki A, Murayama H, Izawa Y, Utsunomiya M, Tokunaga M (2016) ChemSusChem 9:3441–3448CrossRefGoogle Scholar
  6. 6.
    Addepally U, Thulluri C (2015) Fuel 159:935–942CrossRefGoogle Scholar
  7. 7.
    An S, Song D, Sun Y, Zhang QQ, Zhang PP, Guo YH (2018) ACS Sustain Chem Eng 6:3113–3123CrossRefGoogle Scholar
  8. 8.
    Hengne AM, Kamble SB, Rode CV (2013) Green Chem 15:2540–2547CrossRefGoogle Scholar
  9. 9.
    Chada RR, Koppadi KS, Enumula SS, Kondeboina K, Kamaraju SRR, Burri DR (2018) Catal Lett 148:1731–1738CrossRefGoogle Scholar
  10. 10.
    Song DY, An S, Sun YN, Guo YH (2016) J Catal 333:184–199CrossRefGoogle Scholar
  11. 11.
    Ghashghaee M, Sadjadi S, Shirvani S, Farzaneh V (2017) Catal Lett 147:318–327CrossRefGoogle Scholar
  12. 12.
    Marchi AJ (2013) Catal Today 213:87–92CrossRefGoogle Scholar
  13. 13.
    Mironenko RM, Belskaya OB, Gulyaeva TI, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA (2015) Catal Today 249:145–152CrossRefGoogle Scholar
  14. 14.
    Taylor MJ, Durndell LJ, Isaacs MA, Parlett CMA, Wilson K, Lee AF, Kyriakou G (2016) Appl Catal B Environ 180:580–585CrossRefGoogle Scholar
  15. 15.
    Dohade MG, Dhepe PL (2017) Green Chem 19:1144–1154CrossRefGoogle Scholar
  16. 16.
    Aldosari OF, Iqbal S, Miedziak PJ, Brett GL, Jones DR, Liu X, Edwards JK, Morgan DJ, Knight DK, Hutchings GJ (2016) Catal Sci Technol 6:234–242CrossRefGoogle Scholar
  17. 17.
    Chang X, Liu AF, Cai B, Luo JY, Pan H, Huang YB (2016) ChemSusChem 9:3330–3337CrossRefGoogle Scholar
  18. 18.
    Jiménez-Gómez Carmen P, Cecilia JA, Franco-Duro FI, Pozo M, Moreno-Tost R, Maireles-Torres P (2018) Mol Catal 455:121–131CrossRefGoogle Scholar
  19. 19.
    Audemar M, Ciotonea C, De Oliveira Vigier K, Royer S, Ungureanu A, Dragoi B, Dumitriu E, Jerome F (2015) ChemSusChem 8:1885–1891CrossRefGoogle Scholar
  20. 20.
    Gong WB, Chen C, Zhang HM, Zhang Y, Zhang YX, Wang GZ, Zhao HJ (2017) J Mol Catal A Chem 429:51–59Google Scholar
  21. 21.
    Khromova SA, Bykova MV, Bulavchenko OA, Ermakov DY, Saraev AA, Kaichev VV, Venderbosch RH, Yakovlev VA (2016) Top Catal 59:1413–1423CrossRefGoogle Scholar
  22. 22.
    Wang Y, Miao YN, Li S, Gao LJ, Xiao GM (2017) Mol Catal 436:128–137CrossRefGoogle Scholar
  23. 23.
    Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Chem Soc Rev 41:8099–8139CrossRefGoogle Scholar
  24. 24.
    Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075–8098CrossRefGoogle Scholar
  25. 25.
    Dhakshinamoorthy A, Garcia H (2012) Chem Soc Rev 41:5262–5284CrossRefGoogle Scholar
  26. 26.
    Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) J Am Chem Soc 137:1572–1580CrossRefGoogle Scholar
  27. 27.
    Wang H, Yin FX, Chen BH, He XB, Lv PL, Ye CY, Liu DJ (2017) Appl Catal B Environ 205:55–67CrossRefGoogle Scholar
  28. 28.
    Li J, Liu JL, Zhou HJ, Fu Y (2016) ChemSusChem 9:1339–1347CrossRefGoogle Scholar
  29. 29.
    Deng YJ, Dong YY, Wang GH, Sun KL, Shi XD, Zheng L, Li XH, Liao SJ (2017) ACS Appl Mater Inter 9:9699–9709CrossRefGoogle Scholar
  30. 30.
    Shang L, Yu HJ, Huang X, Bian T, Shi R, Zhao YF, Waterhouse GIN, Wu LZ, Tung CH, Zhang TR (2016) Adv Mater 28:1668–1674CrossRefGoogle Scholar
  31. 31.
    Fulajtárova K, Soták T, Hronec M, Vávra I, Dobrocka E, Omastová M (2015) Appl Catal A Gen 502:78–85CrossRefGoogle Scholar
  32. 32.
    Shen K, Chen L, Long JL, Zhong W, Li YW (2015) ACS Catal 5:5264–5271CrossRefGoogle Scholar
  33. 33.
    He ZH, Li N, Wang K, Wang WT, Liu ZT (2019) Mol Catal 470:120–126CrossRefGoogle Scholar
  34. 34.
    Marchi AJ, Cosimo JID, Apesteguia CR (1992) Catal Today 15:383–394CrossRefGoogle Scholar
  35. 35.
    Deng SY, Chu W, Xu HY, Shi LM, Huang LH (2008) J Nat Gas Chem 17:369–373CrossRefGoogle Scholar
  36. 36.
    Yin AY, Guo XY, Dai WL, Fan KN (2009) J Phys Chem C 113:11003–11013CrossRefGoogle Scholar
  37. 37.
    Huang ZW, Cui F, Xue JJ, Zuo JL, Chen J, Xia CG (2012) Catal Today 183:42–51CrossRefGoogle Scholar
  38. 38.
    Singh SA, Mukherjee S, Madras G (2019) Mol Catal 466:167–180CrossRefGoogle Scholar
  39. 39.
    Singh SA, Madras G (2015) Appl Catal A Gen 504:463–475CrossRefGoogle Scholar
  40. 40.
    Li J, Lu GZ, Wu GS, Mao DS, Wang YQ, Guo Y (2012) Catal Sci Technol 2:1865–1871CrossRefGoogle Scholar
  41. 41.
    Hronec M, Fulajtarová K (2012) Catal Commun 24:100–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhi-Xin Li
    • 1
  • Xian-Yong Wei
    • 1
    • 2
    Email author
  • Zheng Yang
    • 1
  • Min Zhang
    • 1
  • Xing-Long Meng
    • 1
  • Shuo Niu
    • 1
  • Di Zhang
    • 1
  • Zhi-Min Zong
    • 1
  1. 1.Key Laboratory of Coal Processing and Efficient Utilization, Ministry of EducationChina University of Mining & TechnologyXuzhouChina
  2. 2.State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical EngineeringNingxia UniversityYinchuanChina

Personalised recommendations