Advertisement

Metal Cocatalyst Directing Photocatalytic Acetonylation of Toluene via Dehydrogenative Cross-Coupling with Acetone

  • Akanksha Tyagi
  • Tomoya Matsumoto
  • Akira Yamamoto
  • Tatsuhisa Kato
  • Hisao YoshidaEmail author
Article
  • 17 Downloads

Abstract

A heterogeneous metal-loaded titanium oxide photocatalyst provided an efficient route to bring out direct dehydrogenative cross-coupling between toluene and acetone without consuming any additional oxidizing agent. The nature of the metal nanoparticle cocatalyst deposited on TiO2 photocatalyst dictated the product selectivity for the cross-coupling. Pd nanoparticles on TiO2 photocatalyst allowed a C–C bond formation between the aromatic ring of toluene and acetone to give 1-(o-tolyl)propan-2-one (1a1) with high regioselectivity, while Pt nanoparticles on TiO2 photocatalyst promoted the cross-coupling between the methyl group of toluene and acetone to give 4-phenylbutan-2-one (1b) as the acetonylated product. These results demonstrated that the selection of the metal cocatalyst on TiO2 photocatalyst could determine which C–H bonds in toluene, aromatic or aliphatic, can react with acetone. Two kinds of reaction mechanisms were proposed for the photocatalytic dehydrogenative cross-coupling reaction, depending on the property of the metal nanoparticles, i.e., only Pd nanoparticles can catalyze the reaction between aromatic ring and the acetonyl radical species.

Graphic Abstract

Keywords

Titanium oxide Photocatalysis C–C cross-coupling Reaction mechanism Dehydrogenative cross-couplings 

Notes

Acknowledgements

The present project was financially supported by Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST, JST; JPMJCR1541).

Supplementary material

10562_2019_2923_MOESM1_ESM.docx (102 kb)
Supplementary material 1 (DOCX 102 kb)

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.  https://doi.org/10.1038/238038a0 CrossRefGoogle Scholar
  2. 2.
    Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I shuttle redox mediator. Chem Phys Lett 344:339–344.  https://doi.org/10.1016/S0009-2614(01)00790-4 CrossRefGoogle Scholar
  3. 3.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425.  https://doi.org/10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  4. 4.
    Yanghe F, Dengrong S, Yongjuan C et al (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51:3364–3367.  https://doi.org/10.1002/anie.201108357 CrossRefGoogle Scholar
  5. 5.
    Mori K, Yamashita H, Anpo M (2012) Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Adv 2:3165–3172.  https://doi.org/10.1039/C2RA01332K CrossRefGoogle Scholar
  6. 6.
    Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686.  https://doi.org/10.1016/j.apsusc.2016.09.093 CrossRefGoogle Scholar
  7. 7.
    Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrog Energy 32:2664–2672.  https://doi.org/10.1016/j.ijhydene.2006.09.009 CrossRefGoogle Scholar
  8. 8.
    Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29.  https://doi.org/10.1016/j.jhazmat.2011.11.050 CrossRefGoogle Scholar
  9. 9.
    Fagnoni M, Dondi D, Ravelli D, Albini A (2007) Photocatalysis for the formation of the C–C bond. Chem Rev 107:2725–2756.  https://doi.org/10.1021/cr068352x CrossRefGoogle Scholar
  10. 10.
    Ma D, Liu A, Li S et al (2018) TiO2 photocatalysis for C–C bond formation. Catal Sci Technol 8:2030–2045.  https://doi.org/10.1039/C7CY01458A CrossRefGoogle Scholar
  11. 11.
    Li R, Kobayashi H, Guo J, Fan J (2011) Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline TiO2: a self-adjustable photo-oxidation system with controllable hole-generation. J Phys Chem C 115:23408–23416.  https://doi.org/10.1021/jp207259u CrossRefGoogle Scholar
  12. 12.
    Xianjun L, Hongwei J, Chuncheng C et al (2011) Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angew Chem Int Ed 50:3934–3937.  https://doi.org/10.1002/anie.201007056 CrossRefGoogle Scholar
  13. 13.
    Yamamoto A, Ohara T, Yoshida H (2018) Visible-light-induced photocatalytic benzene/cyclohexane cross-coupling utilizing a ligand-to-metal charge transfer benzene complex adsorbed on titanium oxides. Catal Sci Technol 8:2046–2050.  https://doi.org/10.1039/c7cy02566a CrossRefGoogle Scholar
  14. 14.
    Ikeda S, Ikoma Y, Kobayashi H et al (2007) Encapsulation of titanium(iv) oxide particles in hollow silica for size-selective photocatalytic reactions. Chem Commun 3753–3755.  https://doi.org/10.1039/B704468B
  15. 15.
    Yurdakal S, Palmisano G, Loddo V et al (2008) Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J Am Chem Soc 130:1568–1569.  https://doi.org/10.1021/ja709989e CrossRefGoogle Scholar
  16. 16.
    Sofianou M-V, Psycharis V, Boukos N et al (2013) Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Appl Catal B 142–143:761–768.  https://doi.org/10.1016/j.apcatb.2013.06.009 CrossRefGoogle Scholar
  17. 17.
    Selvam K, Swaminathan M (2011) Cost effective one-pot photocatalytic synthesis of quinaldines from nitroarenes by silver loaded TiO2. J Mol Catal A 351:52–61.  https://doi.org/10.1016/j.molcata.2011.09.014 CrossRefGoogle Scholar
  18. 18.
    Zheng Z, Huang B, Qin X et al (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21:9079–9087.  https://doi.org/10.1039/C1JM10983A CrossRefGoogle Scholar
  19. 19.
    Alfè M, Spasiano D, Gargiulo V et al (2014) TiO2/graphene-like photocatalysts for selective oxidation of 3-pyridine-methanol to vitamin B3 under UV/solar simulated radiation in aqueous solution at room conditions: the effect of morphology on catalyst performances. Appl Catal A 487:91–99.  https://doi.org/10.1016/j.apcata.2014.09.002 CrossRefGoogle Scholar
  20. 20.
    Kou J, Lu C, Wang J et al (2017) Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev 117:1445–1514.  https://doi.org/10.1021/acs.chemrev.6b00396 CrossRefGoogle Scholar
  21. 21.
    Tanaka A, Fuku K, Nishi T et al (2013) Functionalization of Au/TiO2 plasmonic photocatalysts with pd by formation of a core–shell structure for effective dechlorination of chlorobenzene under irradiation of visible light. J Phys Chem C 117:16983–16989.  https://doi.org/10.1021/jp403855p CrossRefGoogle Scholar
  22. 22.
    Zou X, Tao Z, Asefa T (2013) Semiconductor and plasmonic photocatalysis for selective organic transformations. Curr Org Chem 17:1274–1287.  https://doi.org/10.2174/1385272811317120004 CrossRefGoogle Scholar
  23. 23.
    Wang F, Li C, Chen H et al (2013) Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 43:7188–7216.  https://doi.org/10.1021/ja310501y CrossRefGoogle Scholar
  24. 24.
    Wu X, Jaatinen E, Sarina S, Zhu HY (2017) Direct photocatalysis of supported metal nanostructures for organic synthesis. J Phys D 50:283001.  https://doi.org/10.1088/1361-6463/aa73f6 CrossRefGoogle Scholar
  25. 25.
    Allen A, Cantrell TS (1989) Synthetic reductions in clandestine amphetamine and methamphetamine laboratories: a review. Forensic Sci Int 42:183–199.  https://doi.org/10.1016/0379-0738(89)90086-8 CrossRefGoogle Scholar
  26. 26.
    Newman MS, Booth WT (1945) The preparation of ketones from grignard reagents. J Am Chem Soc 67:154.  https://doi.org/10.1021/ja01217a503 CrossRefGoogle Scholar
  27. 27.
    Shatzmiller S, Lidor R, Shalon E, Bahar E (1984) A novel route to arylacetones via a masked [small alpha]-acylcarbonium intermediate. J Chem Soc Chem Commun 795–796.  https://doi.org/10.1039/C39840000795 Google Scholar
  28. 28.
    Yinghuai Z, Bahnmueller S, Hosmane NS, Maguire JA (2003) An effective system to synthesize arylacetones. Substrate-ionic liquid-ultrasonic irradiation. Chem Lett 32:730–731.  https://doi.org/10.1246/cl.2003.730 CrossRefGoogle Scholar
  29. 29.
    Wada E, Takeuchi T, Fujimura Y et al (2017) Direct cyanomethylation of aliphatic and aromatic hydrocarbons with acetonitrile over a metal loaded titanium oxide photocatalyst. Catal Sci Technol 7:2457–2466.  https://doi.org/10.1039/c7cy00365j CrossRefGoogle Scholar
  30. 30.
    Wada E, Tyagi A, Yamamoto A, Yoshida H (2017) Dehydrogenative lactonization of diols with a platinum-loaded titanium oxide photocatalyst. Photochem Photobiol Sci 16:1744–1748.  https://doi.org/10.1039/C7PP00258K CrossRefGoogle Scholar
  31. 31.
    Tyagi A, Yamamoto A, Kato T, Yoshida H (2017) Bifunctional property of Pt nanoparticles deposited on TiO2 for the photocatalytic sp 3 C–sp 3 C cross-coupling reactions between THF and alkanes. Catal Sci Technol 7:2616–2623.  https://doi.org/10.1039/C7CY00535K CrossRefGoogle Scholar
  32. 32.
    Naniwa S, Tyagi A, Yamamoto A, Yoshida H (2018) Visible-light photoexcitation of pyridine surface complex, leading to selective dehydrogenative cross-coupling with cyclohexane. Phys Chem Chem Phys 20:28375–28381.  https://doi.org/10.1039/c8cp04292f CrossRefGoogle Scholar
  33. 33.
    Yoshida H, Fujimura Y, Yuzawa H et al (2013) A heterogeneous palladium catalyst hybridised with a titanium dioxide photocatalyst for direct C–C bond formation between an aromatic ring and acetonitrile. Chem Commun 49:3793–3795.  https://doi.org/10.1039/c3cc41068d CrossRefGoogle Scholar
  34. 34.
    Tyagi A, Matsumoto T, Kato T, Yoshida H (2016) Direct C–H bond activation of ethers and successive C–C bond formation with benzene by a bifunctional palladium–titania photocatalyst. Catal Sci Technol 6:4577–4583.  https://doi.org/10.1039/C5CY02290H CrossRefGoogle Scholar
  35. 35.
    Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55.  https://doi.org/10.1016/j.jmr.2005.08.013 CrossRefGoogle Scholar
  36. 36.
    Childress BC, Rice AC, Shevlin PB (1974) Rearrangement of the o-tolyl radical to the benzyl radical. CIDNP [chemically induced dynamic nuclear polarization] study. J Org Chem 39:3056–3058.  https://doi.org/10.1021/jo00934a030 CrossRefGoogle Scholar
  37. 37.
    Tyagi A, Yamamoto A, Yoshida H (2018) Novel blended catalysts consisting of a TiO2 photocatalyst and an Al2O3 supported Pd–Au bimetallic catalyst for direct dehydrogenative cross-coupling between arenes and tetrahydrofuran. RSC Adv 8:24021–24028.  https://doi.org/10.1039/c8ra02948b CrossRefGoogle Scholar
  38. 38.
    Ward MD, Bard AJ (1982) Photocurrent enhancement via trapping of photogenerated electrons of titanium dioxide particles. J Phys Chem 86:3599–3605.  https://doi.org/10.1021/j100215a021 CrossRefGoogle Scholar
  39. 39.
    Jovic V, Al-Azri ZHN, Chen W-T et al (2013) Photocatalytic H2 production from ethanol-water mixtures over Pt/TiO2 and Au/TiO2 photocatalysts: a comparative study. Top Catal 56:1139–1151.  https://doi.org/10.1007/s11244-013-0080-8 CrossRefGoogle Scholar
  40. 40.
    Shimura K, Maeda K, Yoshida H (2011) Thermal acceleration of electron migration in gallium oxide photocatalysts. J Phys Chem C 115:9041–9047.  https://doi.org/10.1021/jp110824n CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Akanksha Tyagi
    • 1
  • Tomoya Matsumoto
    • 2
  • Akira Yamamoto
    • 1
    • 2
  • Tatsuhisa Kato
    • 2
    • 3
  • Hisao Yoshida
    • 1
    • 2
    Email author
  1. 1.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto UniversityKyotoJapan
  2. 2.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
  3. 3.Institute for Liberal Arts and Sciences (ILAS)Kyoto UniversityKyotoJapan

Personalised recommendations