Visible-Light-Driven Photoreduction of CO2 to CH4 with H2O Over Amine-Functionalized MIL-125(Ti)

  • Jie DingEmail author
  • Mengqin Chen
  • Xiaowei Du
  • Ruilin Shang
  • Mingyu Xia
  • Juanmin Hu
  • Qin ZhongEmail author


This study focused on the photocatalytic CO2 to methane (CH4) with H2O over NH2-MIL-125(Ti) under visible light. It shows that the CH4 yield of NH2-MIL-125(Ti) reaches as high as 15.83 µmol h−1 \({\text{g}}_{\text{catalysts}}^{ - 1}\), which is 82.6% higher methane (CH4) production than that of MIL-125(Ti). The amine functionalization promotes the CO2 adsorptions on amine groups and the electron transfer between Ti and organic clusters. The H2O acts as a good reductant in this catalytic system, which can provide the electrons and reduce the Ti4+ to Ti3+. This study provided a potential method to enhance the performance of photocatalytic CO2 conversion with H2O for the metal organic frameworks.

Graphic Abstract


CO2 Photocatalysis NH2-MIL-125(Ti) Methane 



This work was financially supported by Jiangsu Province Scientific and Technological Project (BK20180449), the Fundamental Research Funds for the Central Universities (30919011218),the Key Undergraduate Training Program of Nanjing University of Science and Technology, the Key Project of Chinese National Programs for Research and Development (2016YFC0203800), the National Natural Science Foundation of China (51578288), Industry-Academia Cooperation Innovation Fund Projects of Jiangsu Province (BY2016004-09),Jiangsu Province Scientific and Technological Achievements into a Special Fund Project (BA2015062, BA2016055 and BA2017095), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Supplementary material

10562_2019_2900_MOESM1_ESM.docx (122 kb)
Supplementary material 1 (DOCX 122 kb)


  1. 1.
    Ou M, Tu W, Yin S, Xing W, Wu S, Wang H, Wan S, Zhong Q, Xu R (2018) Amino-assisted anchoring of CsPbBr3 peroxide quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed 130:13758–13762CrossRefGoogle Scholar
  2. 2.
    Ding C, Ma Z, Han C, Liu X, Jia Z, Xie H, Bao K, Ye L (2017) Large-scale preparation of BiOX (X = Cl, Br) ultrathin nanosheets for efficient photocatalytic CO2 conversion. J Taiwan Inst Chem E 78:395–400CrossRefGoogle Scholar
  3. 3.
    Ding J, Liu X, Shi M, Li T, Xia M, Du X, Shang R, Gu H, Zhong Q (2019) Single-atom silver-maganese catalysts for photocatalytic CO2 reduction with H2O to CH4. Sol Energy Mater Sol C 195:34–42CrossRefGoogle Scholar
  4. 4.
    Hong D, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T (2017) Visible-light-driven photocatalytic CO2 reduction by a Ni(II) complex bearing a bioinspired tetradentate ligand for selective CO production. J Am Chem Soc 139:6538–6541CrossRefGoogle Scholar
  5. 5.
    Sekizawa K, Sato S, Arai T, Morikawa T (2018) Solar-driven photocatalytic CO2 reduction in water utilizing a ruthenium complex catalyst on p-Type Fe2O3 with a multiheterojunction. ACS Catal 8:1405–1416CrossRefGoogle Scholar
  6. 6.
    Qin J, Wang S, Wang X (2017) Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl Catal B Environ 209:476–482CrossRefGoogle Scholar
  7. 7.
    Tong Y, Chen L, Ning S, Tong N, Zhang Z, Lin H, Li F, Wang X (2017) Photocatalytic reduction of CO2 to CO over the Ti-highly dispersed HZSM-5 zeolite containing Fe. Appl Catal B Environ 203:725–730CrossRefGoogle Scholar
  8. 8.
    Ding J, Bu Y, Ou M, Yu Y, Zhong Q, Fan M (2017) Facile decoration of carbon fibers with Ag nanoparticles for adsorption and photocatalytic reduction of CO2. Appl Catal B Environ 202:314–325CrossRefGoogle Scholar
  9. 9.
    Wang X, Xiang F, Jing S, Ying J, Zhang C (2017) Photocatalytic reduction of CO2 using titanium-substituted and fluorine-doped toitanium-substituted hydroxyapatite as photocatalysts. Catal Lett 147:1–8CrossRefGoogle Scholar
  10. 10.
    Crake A, Chrstoforidis KC, Kafizas A, Zafeiratos S, Petit C (2017) CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation. Appl Catal B Environ 210:131–140CrossRefGoogle Scholar
  11. 11.
    Deng X, Albero J, Xu L, Garcia H, Li Z (2018) Construction of a stable Ru-Re hybrid system based on multifunctional MOF-253 for efficient photocatalytic CO2 reduction. Inorg Chem 57:8276–8286CrossRefGoogle Scholar
  12. 12.
    Lin J, Qin B, Fang F (2018) Nickel bipyridine (Ni(bpy)3Cl2) complex used as molecular catalyst for photocatalytic CO2 reduction. Catal Lett 149:25–33CrossRefGoogle Scholar
  13. 13.
    Shi L, Wang T, Zhang H, Chang K, Ye J (2015) Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv Funct Mater 25:5360–5367CrossRefGoogle Scholar
  14. 14.
    Choi KM, Kim D, Rungtaweevoranit B, Trickett CA, Barmanbek JTD, Alshammari AS, Yang P (2017) Plasmon-enhanced photocatalytic CO2 conversion within metal-organic framworks under visible ligh. J Am Chem Soc 139:356–362CrossRefGoogle Scholar
  15. 15.
    Wang Y, Huang N, Shen J, Liao P, Chen X, Zhang J (2018) Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J Am Chem Soc 140:38–41CrossRefGoogle Scholar
  16. 16.
    Wang X, Wisser FM, Canivet J, Fontecave M, Mellot-Draznieks C (2018) Immobilization of a full photosystem in the large pore MIL-101 metal-organic framework for CO2 reduction. Chemsuschem 11:3315–3322CrossRefGoogle Scholar
  17. 17.
    Wang D, Huang R, LiuW Sun D, Li Z (2014) Fe-based for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal 4:4254–4260CrossRefGoogle Scholar
  18. 18.
    Hendon CH, Tiana D, Fontecave M, Sanchez C, Darras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A (2013) Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J Am Chem Soc 135:10942–10945CrossRefGoogle Scholar
  19. 19.
    Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51:3364–3367CrossRefGoogle Scholar
  20. 20.
    Sun D, Ye L, Li Z (2015) Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl Catal B Environ 164:428–432CrossRefGoogle Scholar
  21. 21.
    Khalekaya K, Pougin A, Medishetty R, Rosler C, Wiktor C, StrunkJ Fishcher RA (2015) Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal-organic framework NH2-MIL125(Ti) loaded with gold nanoparticles. Chem Mater 27:7248–7257CrossRefGoogle Scholar
  22. 22.
    Wu Z, Huang X, Zheng H, Wang P, Dong W, Wang G (2018) Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light. Appl Catal B Environ 224:479–487CrossRefGoogle Scholar
  23. 23.
    Nasalevich MA, Becker R, Ramos-Fernandez EV, Castellanos S, Veber SL, Fedin MV, Kapteijn F, Reek JNH, van der Vlugt JI, Gascon J (2015) Co@NH2-MIL-125(Ti): cobaloxime-derived metal-organic framework-based composite for light-driven H2 production. Energy Environ Sci 8:364–375CrossRefGoogle Scholar
  24. 24.
    Hu S, Liu M, Li K, Zuo Y, Zhang A, Song C, Zhang G, Guo X (2014) Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron. CrystEngComm 16:9645–9650CrossRefGoogle Scholar
  25. 25.
    Chambers MB, Wang X, Ellezam L, Ersen O, Fontecave M, Sanchez C, Rozes L, Mellot-Draznieks C (2017) Maximizing the photocatalytic activity of metal-organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2. J Am Chem Soc 139:8222–8228CrossRefGoogle Scholar
  26. 26.
    Zhang B, Zhang J, Tan X, Shao D, Shi J, Zhang J, Yang G, Han B (2018) MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production. ACS Appl Mater Interfaces 10:16418–16423CrossRefGoogle Scholar
  27. 27.
    Rodriguez NA, Savateev A, Grela MA, Dontsova D (2017) Facile synthesis of potassium poly (heptazine imide) (PHIK)/Ti-based metal-organic framework (MIL-125-NH2) composites for photocatalytic applications. ACS Appl Mater Interfaces 9:22941–22949CrossRefGoogle Scholar
  28. 28.
    Yan B, Zhang L, Tang Z, Al-Mamun M, Zhao H, Su X (2019) Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125(Ti) as a robust photocatalyst for hydrogen evolution. Appl Catal B Environ 43:743–750Google Scholar
  29. 29.
    Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem 396:21–26CrossRefGoogle Scholar
  30. 30.
    Sadeghi N, Sharifnia S, Arabi MS (2016) A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. J CO2 Util 16:450–457CrossRefGoogle Scholar
  31. 31.
    Xu G, Zhang H, Wei J, Zhang HX, Wu X, Li Y, Li C, Zhang J, Ye J (2018) Integrating the g-C3N4 nanosheet with B–H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano 12:5333–5340CrossRefGoogle Scholar
  32. 32.
    Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J Am Chem Soc 126:8839–8842CrossRefGoogle Scholar
  33. 33.
    Zhao L, Ye F, Wang D, Cai X, Meng C, Xie H, Zhang J, Bai S (2018) Lattice engineering on metal cocatalysts for enhanced photocatalytic reduction of CO2 into CH4. Chemsuschem 11:3524–3533CrossRefGoogle Scholar
  34. 34.
    Wang Y, Zhang Z, Zhang L, Shen J, Lin H, Long J, Wu JCS, Fu X, Wang X, Li C (2018) Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J Am Chem Soc 140:14595–14598CrossRefGoogle Scholar
  35. 35.
    Li H, Wu X, Wang J, Gao Y, Li L, Shih K (2016) Enhanced activity of Ag-MgO-TiO2 catalyst for photocatalytic conversion of CO2 and H2O into CH4. Int J Hydrog Energy 41:8479–8488CrossRefGoogle Scholar
  36. 36.
    Ye J, He J, Wang S, Zhou X, Zhang Y, Liu G, Yang Y (2019) Nickel-loaded black TiO2 with inverse opal structure for photocatalytic reduction of CO2 under visible light. Sep Purif Technol 220:8–15CrossRefGoogle Scholar
  37. 37.
    Liu Y, Zhou S, Li J, Wang Y, Jiang G, Zhao Z, Liu B, Gong X, Duan A, Liu J, Wei Y, Zhang L (2015) Photocatalytic reduction of TiO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl Catal B Environ 168–169:125–131CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Nanjing AIREP Environmental Protection Technology Co., LtdNanjingPeople’s Republic of China

Personalised recommendations