Advertisement

SO2 Resistance of Mn–Ce Catalysts for Lean Methane Combustion: Effect of the Preparation Method

  • Liu Zhong
  • Qingyan FangEmail author
  • Xin Li
  • Quan Li
  • Cheng Zhang
  • Gang ChenEmail author
Article
  • 4 Downloads

Abstract

Various catalysts were synthesized by the redox-precipitation (RP) and co-precipitation (CP) methods, and SO2 resistance of the catalysts for lean methane combustion was furtherly investigated. The catalysts before and after the reaction were characterized by XRD, XPS, SEM, FTIR, and H2-TPR. Under the circumstance of 80 ppm SO2, the methane conversion of MnCe-RP reduced by 1.08% within 20 h, much more excellent SO2 resistance than MnCe-CP (reduced by 62.45%). The excellent SO2 resistance of MnCe-RP was due to the excellent morphology, the redox-potential and the SO2 uptake of KxMn8O16 in the bulk and on the surface, oxidizing SO2 to sulfides, protecting the downstream catalyst. And the various sulfates were detected by X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FT-IR), and reduced the activating sites of the catalysts. This work provided a general strategy to enhance SO2 resistance of the catalyst system for lean methane catalytic combustion, utilizing KxMn8O16 to remove SO2 and free from the poison of the downstream catalyst.

Graphic Abstract

Keywords

SO2 resistance Mn–Ce catalyst Lean methane Catalytic combustion KxMn8O16 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51676076), the National Key Research and Development Program of China (No. 2018YFB0605105), and the Research and Development Fund of SKLCC (FSKLCC1805); the technical support from the Analytical and Testing Center at the Huazhong University of Science and Technology is greatly appreciated. Authors acknowledge Dr. Rongxian Bai and Prof. Haiyan Mou for help.

Supplementary material

10562_2019_2896_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1798 kb)

References

  1. 1.
    Wang B, Albarracín Suazo S, Pagán Torres Y, Nikolla E (2017) Catal Today 285:147–158.  https://doi.org/10.1016/j.cattod.2017.01.023 Google Scholar
  2. 2.
    Miller SM, Michalak AM, Detmers RG, Hasekamp OP, Bruhwiler LMP, Schwietzke S (2019) Nat Commun 10:303–310Google Scholar
  3. 3.
    Su S, Agnew J (2006) Fuel 85(9):1201–1210.  https://doi.org/10.1016/j.fuel.2005.11.010 Google Scholar
  4. 4.
    Huang Q, Li W, Lei Y, Guan S, Zheng X, Pan Y, Wen W, Zhu J, Zhang H, Lin Q (2018) Catal Lett 148(9):2799–2811.  https://doi.org/10.1007/s10562-018-2397-1 Google Scholar
  5. 5.
    Lei Y, Li W, Liu Q, Lin Q, Zheng X, Huang Q, Guan S, Wang X, Wang C, Li F (2018) Fuel 233:10–20.  https://doi.org/10.1016/j.fuel.2018.06.035 Google Scholar
  6. 6.
    Xu H, Zhang Q, Qiu C, Lin T, Gong M, Chen Y (2012) Chem Eng Sci 76:120–128.  https://doi.org/10.1016/j.ces.2012.04.012 Google Scholar
  7. 7.
    Arena F, Trunfio G, Negro J, Spadaro L (2008) Appl Catal B-Environ 85(1–2):40–47.  https://doi.org/10.1016/j.apcatb.2008.06.020 Google Scholar
  8. 8.
    Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G (2015) Inorg Chim Acta 431:101–109.  https://doi.org/10.1016/j.ica.2014.12.017 Google Scholar
  9. 9.
    Grasselli RK (1999) Catal Today 49(1–3):141–153.  https://doi.org/10.1016/S0920-5861(98)00418-0 Google Scholar
  10. 10.
    Cui M, Li Y, Wang X, Wang J, Shen M (2013) J Rare Earth 31(6):572–576.  https://doi.org/10.1016/S1002-0721(12)60322-6 Google Scholar
  11. 11.
    Zhong L, Li X, Fang Q, Yu S, Xu H, Zhang C, Chen G (2019) J Fuel Chem Technol 47(3):378–384Google Scholar
  12. 12.
    Zhong L, Fang Q, Li X, Li Q, Zhang C, Chen G (2019) Appl Catal A-Gen 579:151–158.  https://doi.org/10.1016/j.apcata.2019.04.013 Google Scholar
  13. 13.
    Yang Z, Liu J, Zhang L, Zheng S, Guo M, Yan Y (2014) RSC Adv 4(74):39394.  https://doi.org/10.1039/C4RA05334F Google Scholar
  14. 14.
    Monai M, Montini T, Melchionna M, Duchoň T, Kúš P, Chen C, Tsud N, Nasi L, Prince KC, Veltruská K, Matolín V, Khader MM, Gorte RJ, Fornasiero P (2017) Appl Catal B-Environ 202:72–83.  https://doi.org/10.1016/j.apcatb.2016.09.016 Google Scholar
  15. 15.
    Ordóñez S, Paredes JR, Díez FV (2008) Appl Catal A-Gen 341(1–2):174–180.  https://doi.org/10.1016/j.apcata.2008.02.042 Google Scholar
  16. 16.
    Zhang-Steenwinkel Y, Castricum HL, Beckers J, Eiser E, Bliek A (2004) J Catal 221(2):523–531.  https://doi.org/10.1016/j.jcat.2003.09.016 Google Scholar
  17. 17.
    Machida M, Eguchi K, Arai H (1989) J Catal 120(2):377–386.  https://doi.org/10.1016/0021-9517(89)90277-7 Google Scholar
  18. 18.
    Li W, Lin Y, Zhang Y (2003) Catal Today 83(1):239–245.  https://doi.org/10.1016/S0920-5861(03)00244-X Google Scholar
  19. 19.
    Zi X, Liu L, Xue B, Dai H, He H (2011) Catal Today 175(1):223–230.  https://doi.org/10.1016/j.cattod.2011.03.039 Google Scholar
  20. 20.
    Xu H, Yan N, Qu Z, Liu W, Mei J, Huang W, Zhao S (2017) Environ Sci Technol 51(16):8879–8892.  https://doi.org/10.1021/acs.est.6b06079 Google Scholar
  21. 21.
    Arena F, Trunfio G, Negro J, Fazio B, Spadaro L (2007) Chem Mater 19(9):2269–2276.  https://doi.org/10.1021/cm070198n Google Scholar
  22. 22.
    Fiuk MM, Adamski A (2015) Catal Today 257:131–135.  https://doi.org/10.1016/j.cattod.2015.01.029 Google Scholar
  23. 23.
    Urdă A, Popescu I, Cacciaguerra T, Tanchoux N, Tichit D, Marcu I-C (2013) Appl Catal A-Gen 464–465:20–27.  https://doi.org/10.1016/j.apcata.2013.05.012 Google Scholar
  24. 24.
    Li S, Song P, Zhang J, He X, Xie Y, Zhang Y, Wang R, Li Z, Zhu H (2018) J Fuel Chem Technol 46(5):615–624Google Scholar
  25. 25.
    Liu L, Shi JJ, Zhang XJ, Liu JZ (2015) J Chem-NY.  https://doi.org/10.1155/2015/254750 Google Scholar
  26. 26.
    Shi LM, Chu W, Qu FF, Hu JY, Li MM (2008) J Rare Earth 26(6):836–840.  https://doi.org/10.1016/S1002-0721(09)60017-X Google Scholar
  27. 27.
    Zhang H, Yang W, Li D, Wang X (2009) React Kinet Catal L 97(2):263–268.  https://doi.org/10.1007/s11144-009-0024-2 Google Scholar
  28. 28.
    Xu J, Li P, Song X, He C, Yu J, Han Y (2010) J Phys Chem Lett 1(10):1648–1654.  https://doi.org/10.1021/jz1004522 Google Scholar
  29. 29.
    Liu C, Yu J, Jiang Z, Tao Y, Hao Z, He X (2007) Chin J Inorg Chem 23(2):217–224Google Scholar
  30. 30.
    Leong ZY, Yang HY (2019) ACS Appl Mater Interfaces.  https://doi.org/10.1021/acsami.8b20880 Google Scholar
  31. 31.
    Yang L, Jiang X, Yang ZS, Jiang WJ (2015) Ind Eng Chem Res 54(5):1689–1696.  https://doi.org/10.1021/ie503729a Google Scholar
  32. 32.
    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257(7):2717–2730.  https://doi.org/10.1016/j.apsusc.2010.10.051 Google Scholar
  33. 33.
    Poyraz AS, Huang J, Pelliccione CJ, Tong X, Cheng S, Wu L, Zhu Y, Marschilok AC, keuchi KJ, Takeuchi ES (2017) J Mater Chem A 5:16914–16928.  https://doi.org/10.1039/C7TA03476H Google Scholar
  34. 34.
    Poyraz AS, Huang JP, Cheng SB, Bock DC, Wu LJ, Zhu YM, Marschilok AC, Takeuchi KJ, Takeuchi ES (2016) Green Chem 18(11):3414–3421.  https://doi.org/10.1039/C6GC00438E Google Scholar
  35. 35.
    Yu Q, Wang C, Li XY, Li Z, Wang L, Zhang Q, Wu GL, Li ZC (2019) Fuel 239:1240–1245.  https://doi.org/10.1016/j.fuel.2018.11.094 Google Scholar
  36. 36.
    Huang X, Zhao G, Chang Y, Wang G, Irvine JTS (2018) Appl Surf Sci 440:20–28.  https://doi.org/10.1016/j.apsusc.2017.12.197 Google Scholar
  37. 37.
    Chen L, Niu X, Li Z, Dong Y, Zhang Z, Yuan F, Zhu Y (2016) Catal Commun 85:48–51.  https://doi.org/10.1016/j.catcom.2016.07.013 Google Scholar
  38. 38.
    Zhang F, Tian G, Wang H, Wang H, Zhang C, Cui Y, Huang J, Shu Y (2016) Chem Res Chin Univ 32(3):461–467.  https://doi.org/10.1007/s40242-016-5374-5 Google Scholar
  39. 39.
    Zhang Z, Huang J, Xia H, Dai Q, Gu Y, Lao Y, Wang X (2018) J Catal 360:277–289.  https://doi.org/10.1016/j.jcat.2017.11.024 Google Scholar
  40. 40.
    Yu J, Chen Z, Zeng L, Ma Y, Feng Z, Wu Y, Lin H, Zhao L, He Y (2018) Sol Energy Mater Sol Cells 179:45–56.  https://doi.org/10.1016/j.solmat.2018.01.043 Google Scholar
  41. 41.
    Naumkin VA, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray Photoelectron Spectroscopy Database. National Institute of Standards and Technology, NIST Standard Reference DatabaseGoogle Scholar
  42. 42.
    Li W, Zhang C, Li X, Tan P, Zhou A, Fang Q, Chen G (2018) Chin J Catal 39(10):1653–1663.  https://doi.org/10.1016/S1872-2067(18)63099-2 Google Scholar
  43. 43.
    Han Y-F, Chen L, Ramesh K, Widjaja E, Chilukoti S, Surjami IK, Chen J (2008) J Catal 253(2):261–268.  https://doi.org/10.1016/j.jcat.2007.11.010 Google Scholar
  44. 44.
    Riccardi CS, Lima RC, dos Santos ML, Bueno PR, Varela JA, Longo E (2009) Solid State Ion 180(2–3):288–291.  https://doi.org/10.1016/j.ssi.2008.11.016 Google Scholar
  45. 45.
    Julien CM, Massot M, Poinsignon C (2004) Spectrochim Acta A 60(3):689–700.  https://doi.org/10.1016/S1386-1425(03)00279-8 Google Scholar
  46. 46.
    Aghazadeh M, Ghannadi Maragheh M, Ganjali MR, Norouzi P (2017) Inorg Nano-Met Chem 47(7):1085–1089.  https://doi.org/10.1080/24701556.2017.1284092 Google Scholar
  47. 47.
    Alonso L, Palacios JM, Garcia E, Moliner R (2000) Fuel Process Technol 62:31–44.  https://doi.org/10.1016/S0378-3820(99)00063-6 Google Scholar
  48. 48.
    Chang H, Chen X, Li J, Ma L, Wang C, Liu C, Schwank JW, Hao J (2013) Environ Sci Technol 47(10):5294–5301.  https://doi.org/10.1021/es304732h Google Scholar
  49. 49.
    Wasalathanthri ND, Poyraz AS, Biswas S, Meng Y, Kuo C-H, Kriz DA, Suib SL (2015) J Phys Chem C 119(3):1473–1482.  https://doi.org/10.1021/jp5108558 Google Scholar
  50. 50.
    Zhang CM, Pang X, Wang YZ (2018) Acta Chim Sinica 76(2):133–137.  https://doi.org/10.6023/A17090418 Google Scholar
  51. 51.
    Liu G, Sun L, Luo W, Yang Y, Liu J, Wang F, Guild CJ (2018) Mol Catal 458:9–18.  https://doi.org/10.1016/j.mcat.2018.07.022 Google Scholar
  52. 52.
    Xingyi W, Qian K, Dao L (2009) Appl Catal B-Environ 86:166–175.  https://doi.org/10.1016/j.apcatb.2008.08.009 Google Scholar
  53. 53.
    Li L, King DL (2005) Ind Eng Chem Res 44(1):168–177.  https://doi.org/10.1021/ie049111n Google Scholar
  54. 54.
    Vasconcellos CM, Gonçalves MLA, Pereira MM, Carvalho NMF (2015) Appl Catal A-Gen 498:69–75.  https://doi.org/10.1016/j.apcata.2015.01.030 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Coal Combustion, School of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations