Advertisement

Paper-Structured Catalyst Based on CeO2–ZrO2 Fibers for Soot Combustion

  • Gang YuEmail author
  • Jing Wang
  • Jiao Liu
  • Xiao Cheng
  • Hongmei Ma
  • Hongya Wu
  • Zhigang Yang
  • Guanglei Zhang
  • Xiuguo Sun
Article
  • 4 Downloads

Abstract

In the present work, we proposed a facile route to fabricate massive continuous CeO2–ZrO2 fibers that can be used as matrix for the paper catalyst. The morphology, phase structure and physicochemical properties of CeO2–ZrO2 fibers with different Ce/Zr ratios(1/9 ~ 1/1) were studied extensively. Results showed that the sample CZ-2-700(Ce/Zr = 1/3) fibers possessed the highest Osurf (51.8%) and OSC value (245 μmol O2/g of CeO2–ZrO2), as well as desirable amount of oxygen defects from CeO2 lattice (Ov/F2g), which was very adaptive and chosen as matrix fibers for paper catalyst with an open mat with numerous macro-pores. Through proportional adjustment of matrix fibers (CZ fibers and mullite fibers), high soot/catalyst contact degree and well dispersed active ingredients, as well as uniform interconnected network with macropores can be achieved for the paper catalysts, which was favored by the efficient transfer of abundant active oxygen species and exhaust gas diffusion for soot catalytic combustion. The sample (CZ fibers: mullite fibers = 2: 1, in weight) exhibited the highest catalytic activities among all the samples (T50 = 389 °C, Tm = 363 °C).

Graphic Abstract

Keywords

CeO2–ZrO2 Ceramic paper catalysts Matrix fibers Soot combustion 

Notes

Acknowledgments

The authors gratefully appreciate the financial support from National Natural Science Foundation (51602208, 51502179), Hebei Provincial Natural Science Foundation (E2017210065, E2017210096), and Key project of science and technology research in Hebei University (ZD2017067).

References

  1. 1.
    Zhu L, Yu J, Wang X (2007) Oxidation treatment of diesel soot particulate on CexZr1−xO2. J Hazard Mater 140:205–210CrossRefGoogle Scholar
  2. 2.
    Li H, Qian X, Wang Q (2013) Heavy metals in atmospheric particulate matter: a comprehensive understanding is needed for monitoring and risk mitigation. Environ Sci Technol 47:13210–13211CrossRefGoogle Scholar
  3. 3.
    Johnson BT (2008) Diesel engine emissions and their control. Plat Met Rev 52:23–37CrossRefGoogle Scholar
  4. 4.
    Neeft JPA, Makkee M, Moulijn JA (1996) Diesel particulate emission control. Fuel Process Technol 47:1–69CrossRefGoogle Scholar
  5. 5.
    Walker AP (2004) Controlling particulate emissions from diesel vehicles. Top Catal 28:165–170CrossRefGoogle Scholar
  6. 6.
    Setten BAAL, Makkee M, Moulijn JA (2001) Science and technology of catalytic diesel particulate filters. Catal Rev 43:489–564CrossRefGoogle Scholar
  7. 7.
    Hua F, Chen J, Peng Y, Song H, Li K, Li J (2018) Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion. Chem Eng J 331:425–434CrossRefGoogle Scholar
  8. 8.
    Gao Y, Duan A, Liu S et al (2007) Study of Ag/CexNd1−xO2 nanocubes as soot oxidation catalysts for gasoline particulate filters: balancing catalyst activity and stability by Nd doping. Appl Catal B 203:116–126CrossRefGoogle Scholar
  9. 9.
    Lee C, Park JI, Shul YG, Einaga H, Teraoka Y (2015) Ag supported on electrospun macro-structure CeO2 fibrous mats for diesel soot oxidation. Appl Catal B 174–175:185–192CrossRefGoogle Scholar
  10. 10.
    Bensaid S, Russo N, Fino D (2013) CeO2 catalysts with fibrous morphology for soot oxidation: the importance of the soot–catalyst contact conditions. Catal Today 216:57–63CrossRefGoogle Scholar
  11. 11.
    Lee C, Jeon Y, Kim T, Tou A, Park J, Einaga H, Shul YG (2018) Ag-loaded cerium-zirconium solid solution oxide nano-fibrous webs and their catalytic activity for soot and CO oxidation. Fuel 212:395–404CrossRefGoogle Scholar
  12. 12.
    Zhang G, Zhao Z, Liu J, Jiang G, Duan A, Zheng J, Chen S, Zhou R (2010) Three dimensionally ordered macroporous Ce1-xZrxO2 solid solutions for diesel soot combustion. Chem Commun 46:457–459CrossRefGoogle Scholar
  13. 13.
    Virginia AS, Arantxa DQ, Dolores LC, Agustín BL (2018) On the soot combustion mechanism using 3DOM ceria catalysts. Appl Catal B 234:187–197CrossRefGoogle Scholar
  14. 14.
    Wei Y, Liu J, Zhao Z, Duan A, Jiang G (2012) The catalysts of three-dimensionally ordered macroporous Ce1-xZrxO2-supported gold nanoparticles for soot combustion: the metal-support interaction. J Catal 287:13–29CrossRefGoogle Scholar
  15. 15.
    Koga H, Ishihara H, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2010) NOx reduction over paper-structured fiber composites impregnated with Pt/Al2O3 catalyst for exhaust gas purification. J Mater Sci 45:4151–4157CrossRefGoogle Scholar
  16. 16.
    Koga H, Kitaoka T, Wariishi H (2009) On-paper synthesis of Au nanocatalysts from Au(III) complex ions for low-temperature CO oxidation. J Mater Chem 19:5244–5249CrossRefGoogle Scholar
  17. 17.
    Koga H, Umemura Y, Tomoda A (2010) In situ synthesis of platinum nanocatalysts on a microstructured paper-like matrix for the catalytic purification of exhaust gases. Chemsuschem 3:604–608CrossRefGoogle Scholar
  18. 18.
    Banús ED, Ulla MA, Galván MV, Zanuttini MA, Milt VG, Miró EE (2010) Catalytic ceramic paper for the combustion of diesel soot. Catal Commun 12:46–49CrossRefGoogle Scholar
  19. 19.
    Tuler FE, Banús ED, Zanuttini MA, Miró EE, Milt VG (2014) Ceramic papers as flexible structures for the development of novel diesel soot combustion catalysts. Chem Eng J 246:287–298CrossRefGoogle Scholar
  20. 20.
    Lee C, Jeon Y, Hata S, Park J, Akiyoshia R, Saito H, Teraoka Y, Shul Y, Einaga H (2016) Three-dimensional arrangements of perovskite-type oxide nano-fiberwebs for effective soot oxidation. Appl Catal B 191:157–164CrossRefGoogle Scholar
  21. 21.
    Shi JL (2013) On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 113:2139–2181CrossRefGoogle Scholar
  22. 22.
    Zhu L, Yu G, Qin W, Wang X, Xu D (2010) Preparation, morphology and specific surface area of CeO2–ZrO2 and CeO2–ZrO2–Al2O3 fine fibers via precursor sol-gel technique. J Alloy Compd 492:456–460CrossRefGoogle Scholar
  23. 23.
    Li J, Chiu KL, Kwong FL, Ng DHL, Chan SLI (2009) Conversion of egg shell membrane to inorganic porous CexZr1−xO2 fibrous network. Curr App Phys 9:1438–1444CrossRefGoogle Scholar
  24. 24.
    Reddy BM, Lakshmanan P, Bharali P, Saikia P, Thrimurthulu G, Muhler M, Grunert W (2007) Influence of alumina, silica, and titania supports on the structure and CO oxidation activity of CexZr1−xO2 nanocomposite oxides. J Phys Chem C 111:10478–10483CrossRefGoogle Scholar
  25. 25.
    Tonelli F, Gorriz O, Tarditi A, Cornaglia L, Arru´a L, Abello MC (2015) Activity and stability of a CuO/CeO2 catalyst for methanol steam reforming. Int J Hydro Energy 40:13379–13387CrossRefGoogle Scholar
  26. 26.
    Hartmann P, Brezesinski T, Sann J, Lotnyk A, Eufinger JP et al (2013) Defect chemistry of oxide nanomaterials with high surface area: ordered mesoporous thin films of the oxygen storage catalyst CeO2–ZrO2. ACS Nano 7:2999–3013CrossRefGoogle Scholar
  27. 27.
    Chen G, Song G, Zhao W, Gao D, Wei Y, Li C (2018) Carbon sphere-assisted solution combustion synthesis of porous/hollow structured CeO2–MnOx catalysts. Chem Eng J 352:64–70CrossRefGoogle Scholar
  28. 28.
    Laguna OH, Pérez A, Centeno MA, Odriozola JA (2015) Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation. Appl Catal B 176–177:385–395CrossRefGoogle Scholar
  29. 29.
    Hernandez WY, Centeno MA, Romero-Sarria F, Odriozola JA (2009) Synthesis and characterization of Ce1−xEuxO2−x/2 mixed oxides and their catalytic activities for CO oxidation. J Phys Chem C 113:5629–5635CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gang Yu
    • 1
    Email author
  • Jing Wang
    • 1
  • Jiao Liu
    • 1
  • Xiao Cheng
    • 1
  • Hongmei Ma
    • 1
  • Hongya Wu
    • 1
  • Zhigang Yang
    • 1
  • Guanglei Zhang
    • 1
  • Xiuguo Sun
    • 1
  1. 1.School of Materials Science and EngineeringShijiazhuang Tiedao UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations