Ni@HC Core–Shell Structured Catalysts for Dry Reforming of Methane and Carbon Dioxide

  • Jun Han
  • Yan Liang
  • Linbo QinEmail author
  • Bo Zhao
  • Huaqin Wang
  • Yu WangEmail author


Hydrochar (HC) has all the criteria of a catalyst support, in particular its low-cost and high thermal stability. However, it is still few reported in the dry reforming of methane reaction (DRM). In this paper, a series of Ni@HC core–shell structural catalysts were synthesized by a facile hydrothermal strategy and subsequent wetness impregnation method, and evaluated in the DRM reaction. Experimental results demonstrated that Ni15@HC catalyst possessed an excellent CH4 and CO2 conversions of 80.3% and 90.3% at 850 °C, with a negligible decreasing of 1.8% and 2.2% after 100 h test, respectively. At the same time, H2 and CO selectivity reached 93.4% and 98.7%. XRD, XPS, TEM, SEM and TG-DTG characteristic of the used catalysts presented that limited coke deposition at the surface of catalyst was occurred and Ni particle size was slight decreased from 24.0 to 25.9 nm during DRM process. In-situ DRIFTS analysis was conducted to investigate the reaction mechanism. These results demonstrated that Ni@HC core–shell structural catalysts were very promising for its application in DRM process.

Graphic Abstract


Ni-based nanomaterials Hydrochar Dry reforming of CH4 Sugarcane bagasse Core–shell structure 



The present work is supported Natural Science Foundation of Hubei Province (Grant No. 2019CFB019) and Technology Innovation Special Foundation of Hubei Province (Grant Nos. 2019ACA157 & 2019AHB073).

Supplementary material

10562_2019_2889_MOESM1_ESM.docx (341 kb)
Supplementary material 1 (DOCX 341 kb)


  1. 1.
    Liu Y, Yue T, Zhang L, Zhao N, Zhao M, Liu Y (2018) Environ Sci Pollut Res 25:27378–27392CrossRefGoogle Scholar
  2. 2.
    Poua JO, Colominasb C, Gonzalez-Olmos R (2018) J CO2 Util 27:528–535CrossRefGoogle Scholar
  3. 3.
    Han J, Zhang L, Zhao B, Qin L, Wang Y, Xing F (2019) Ind Crops Prod 128:290–297CrossRefGoogle Scholar
  4. 4.
    Schakel W, Oreggioni G, Singh B, Strømman A (2016) J CO2 Util 16:138–149CrossRefGoogle Scholar
  5. 5.
    Muñoz MA, Calvino JJ, Rodríguez-Izquierdo JM, Blanco G, Arias DC, Pérez-Omil JA, Hernández-Garrido JC, González-Leal JM, Cauqui MA, Yeste MP (2017) Appl Surf Sci 426:864–873CrossRefGoogle Scholar
  6. 6.
    Han J, Zhan Y, Street J, To F, Yu F (2017) Int J Hydrog Energy 42:18364–18374CrossRefGoogle Scholar
  7. 7.
    Han J, Zhang L, Lu Y, Hu J, Cao B, Yu F (2017) Mol Catal 440:175–183CrossRefGoogle Scholar
  8. 8.
    Chang X, Liu B, Xia H, Amin R (2018) Appl Surf Sci 442:342–351CrossRefGoogle Scholar
  9. 9.
    Han J, Liang Y, Hu J, Qin L, Street J, Lu Y, Yu F (2017) Energy Convers Manag 153:641–648CrossRefGoogle Scholar
  10. 10.
    Moral A, Reyero I, Alfaro C, Bimbela F, Gandía LM (2018) Catal Today 299:280–288CrossRefGoogle Scholar
  11. 11.
    Whang HS, Choi MS, Lim J, Kim C, Heo I, Chang T-S, Lee H (2017) Catal Today 293–294:122–128CrossRefGoogle Scholar
  12. 12.
    Wang F, Xu L, Yang J, Zhang J, Zhang L, Li H, Zhao Y, Li HX, Wu K, Xu GQ, Chen W (2017) Catal Today 281:295–303CrossRefGoogle Scholar
  13. 13.
    Rameshan C, Li H, Anic K, Roiaz M, Pramhaas V, Rameshan R, Blume R, Hävecker M, Knudsen J, Knopgericke A (2018) J Phys 30:264007–264031Google Scholar
  14. 14.
    Singha RK, Yadav A, Shukla A, Kumar M, Bal R (2017) Catal Commun 92:19–22CrossRefGoogle Scholar
  15. 15.
    Horlyck J, Lawrey C, Lovell EC, Amal R, Scott J (2018) Chem Eng J 352:572–580CrossRefGoogle Scholar
  16. 16.
    Lu Y, Jiang S, Wang S, Zhao Y, Ma X (2018) J CO2 Util 26:123–132CrossRefGoogle Scholar
  17. 17.
    Luisetto I, Tuti S, Romano C, Boaro M, Bartolomeo ED, Kesavan JK, Kumar SS, Selvakumar K (2019) J CO2 Util 30:63–78CrossRefGoogle Scholar
  18. 18.
    Xu L-L, Wen H, Jin X, Bing Q-M, Liu J-Y (2018) Appl Surf Sci 443:515–524CrossRefGoogle Scholar
  19. 19.
    Yang T, Chen W, Chen L, Liu W, Zhang D (2016) J CO2 Util 16:130–137CrossRefGoogle Scholar
  20. 20.
    Park J-H, Yeo S, Chang T-S (2018) J CO2 Util 26:465–475CrossRefGoogle Scholar
  21. 21.
    Song K, Lu M, Xu S, Chen C, Zhan Y, Li D, Au C, Jiang L, Tomishige K (2018) Appl Catal B 239:324–333CrossRefGoogle Scholar
  22. 22.
    Theofanidis SA, Galvita VV, Poelman H, Dharanipragada NVRA, Longo A, Meledina M, Tendeloo GV, Detavernier C, Marin GB (2018) ACS Catal 8:5983–5995CrossRefGoogle Scholar
  23. 23.
    Jiang S, Lu Y, Wang S, Zhao Y, Ma X (2017) Appl Surf Sci 423:1080–1089CrossRefGoogle Scholar
  24. 24.
    Abdullah B, Abd Ghani NA, D-VN Vo (2017) J Cleaner Prod 162:170–185CrossRefGoogle Scholar
  25. 25.
    Nikoo MK, Amin NAS (2011) Fuel Process Technol 92:678–691CrossRefGoogle Scholar
  26. 26.
    Chein RY, Chen YC, Yu CT, Chung JN (2015) J Nat Gas Sci Eng 26:617–629CrossRefGoogle Scholar
  27. 27.
    Richardson JT, Paripatyadar SA (1990) Appl Catal 61:293–309CrossRefGoogle Scholar
  28. 28.
    Akbari E, Alavi SM, Rezaei M (2018) J CO2 Util 24:128–138CrossRefGoogle Scholar
  29. 29.
    Peng H, Rao C, Zhang N, Wang X, Liu W, Mao W, Han L, Zhang P, Dai S (2018) Angew Chem Int Ed 57:8953–8957CrossRefGoogle Scholar
  30. 30.
    Bian Z, Suryawinata IY, Kawi S (2016) Appl Catal B 195:1–8CrossRefGoogle Scholar
  31. 31.
    Peng H, Dong T, Zhang L, Wang C, Liu W, Bao J, Wang X, Zhang N, Wang Z, Wu P, Zhang P, Dai S (2019) Appl Catal B 256:117807CrossRefGoogle Scholar
  32. 32.
    Zhang X, Zhang L, Peng H, You X, Peng C, Xu X, Liu W, Fang X, Wang Z, Zhang N, Wang X (2018) Appl Catal B 224:488–499CrossRefGoogle Scholar
  33. 33.
    Liu W, Li L, Zhang X, Wang Z, Wang X, Peng H (2018) J CO2 Util 27:297–307CrossRefGoogle Scholar
  34. 34.
    Peng H, Zhang X, Zhang L, Rao C, Lian J, Liu W, Ying J, Zhang G, Wang Z, Zhang N, Wang X (2017) ChemCatChem 9:127–136CrossRefGoogle Scholar
  35. 35.
    Zhang G, Sun Y, Zhao P, Xu Y, Su A, Qu J (2017) J CO2 Util 20:129–140CrossRefGoogle Scholar
  36. 36.
    Zhang G, Zhao P, Xu Y, Qu J (2017) J CO2 Util 18:326–334CrossRefGoogle Scholar
  37. 37.
    Kim H, Jeong NJ, Han SO (2012) Appl Catal B 113–114:116–125CrossRefGoogle Scholar
  38. 38.
    Zhang G, Su A, Du Y, Qu J, Xu Y (2014) J Colloid Interface Sci 433:149–155CrossRefGoogle Scholar
  39. 39.
    Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) Renew Sust Energy Rev 90:223–247CrossRefGoogle Scholar
  40. 40.
    Titirici MM, White RJ, Falco C, Sevilla M (2012) Energy Environ Sci 5:6796–6822CrossRefGoogle Scholar
  41. 41.
    Gai C, Zhang F, Yang T, Liu Z, Jiao W, Peng N, Liu T, Lang Q, Xia Y (2018) Green Chem 20:2788–2800CrossRefGoogle Scholar
  42. 42.
    Chen W, Li Z, Hu F, Qin L, Han J, Wu G (2018) Appl Surf Sci 439:75–81CrossRefGoogle Scholar
  43. 43.
    Shao S, Zhang H, Rui X, Li X, Cai Y (2018) Fuel Process Technol 178:88–97CrossRefGoogle Scholar
  44. 44.
    Shao S, Zhang H, Rui X, Li X, Cai Y (2017) J Anal Appl Pyrol 127:258–268CrossRefGoogle Scholar
  45. 45.
    Peng B, Zhang H, Zhang Y (2019) Fuel 248:56–64CrossRefGoogle Scholar
  46. 46.
    Sokolov S, Radnik J, Schneider M, Rodemerck U (2017) Int J Hydrogen Energy 42:9831–9839CrossRefGoogle Scholar
  47. 47.
    Stroud T, Smith TJ, Saché EL, Santos JL, Centeno MA, Arellano-Garcia H, Odriozola JA, Reinaa TR (2018) Appl Catal B 224:125–135CrossRefGoogle Scholar
  48. 48.
    Saché EL, Pastor-Pérez L, Watson D, Sepúlveda-Escribano A, Reina TR (2018) Appl Catal B 236:458–465CrossRefGoogle Scholar
  49. 49.
    Xu L, Guo L, Hu G, Chen J, Hu X, Wang S, Dai W, Fan M (2015) RSC Adv 5:37964–37969CrossRefGoogle Scholar
  50. 50.
    Alipour Z, Rezaei M, Meshkani F (2014) J Energy Chem 23:633–638CrossRefGoogle Scholar
  51. 51.
    Fidalgo B, MenÉNdez JÁ (2011) Chin J Catal 32:207–216CrossRefGoogle Scholar
  52. 52.
    Wang F, Xu L, Shi W (2016) J CO2 Util 16:318–327CrossRefGoogle Scholar
  53. 53.
    Lu Y, Yan Q, Han J, Cao B, Street J, Yu F (2017) Fuel 193:369–384CrossRefGoogle Scholar
  54. 54.
    Figueira CE, Moreira PF, Giudici R, Alves RMB, Schmal M (2018) Appl Catal A 550:297–307CrossRefGoogle Scholar
  55. 55.
    Serrano-Lotina A, Daza L (2014) Appl Catal A 474:107–113CrossRefGoogle Scholar
  56. 56.
    Tang M, Xu L, Fan M (2014) Int J Hydrog Energy 39:15482–15496CrossRefGoogle Scholar
  57. 57.
    Sun J, Wang S, Guo Y, Li M, Zou H, Wang Z-J (2018) Catal Commun 104:53–56CrossRefGoogle Scholar
  58. 58.
    Wang N, Shen K, Huang L, Yu X, Qian W, Chu W (2013) ACS Catal 3:1638–1651CrossRefGoogle Scholar
  59. 59.
    Jin L, Xie T, Ma B, Li Y, Hu H (2017) Int J Hydrog Energy 42:5047–5055CrossRefGoogle Scholar
  60. 60.
    Khavarian M, Chai SP, Mohamed AR (2014) Chem Eng J 257:200–208CrossRefGoogle Scholar
  61. 61.
    Yu M, Zhu Y, Lu Y, Tong G, Zhu K, Zhou X (2015) Appl Catal B 165:43–56CrossRefGoogle Scholar
  62. 62.
    Han J, Li W, Liu D, Qin L, Chen W, Xing F (2018) J Anal Appl Pyrol 129:1–5CrossRefGoogle Scholar
  63. 63.
    Sun Y, Zhang G, Liu J, Zhao P, Hou P, Xu Y, Zhang R (2018) Int J Hydrog Energy 43:1497–1507CrossRefGoogle Scholar
  64. 64.
    Lua AC, Yang T (2005) J Colloid Interface Sci 290:505–513CrossRefGoogle Scholar
  65. 65.
    Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Renew Sustain Energy Rev 82:2570–2585CrossRefGoogle Scholar
  66. 66.
    Lin J, Ma C, Wang Q, Xu Y, Ma G, Wang J, Wang H, Dong C, Zhang C, Ding M (2019) Appl Catal B 243:262–272CrossRefGoogle Scholar
  67. 67.
    Wang S, Lu GQ (1996) Energy Fuels 10:896–904CrossRefGoogle Scholar
  68. 68.
    Park J-H, Yeo S, HeO I, Chang T-S (2018) Appl Catal A 562:120–131CrossRefGoogle Scholar
  69. 69.
    Park J-H, Yeo S, Kang T-J, Shin H-R, Heo I, Chang TS (2018) J CO2 Util 23:10–19CrossRefGoogle Scholar
  70. 70.
    Talkhoncheh SK, Haghighi M, Jodeiri N, Aghamohammadi S (2017) J Nat Gas Sci Eng 46:699–709CrossRefGoogle Scholar
  71. 71.
    Akbari E, Alavi SM, Rezaei M (2017) Fuel 194:171–179CrossRefGoogle Scholar
  72. 72.
    Li J, Li J, Zhu Q (2018) Chin J Chem Eng 26:2344–2350CrossRefGoogle Scholar
  73. 73.
    Guharoy U, Saché EL, Cai Q, Reina TR, Gu S (2018) J CO2 Util 27:1–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral ResourcesWuhan University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Provincial Industrial Safety Engineering Technology Research CenterWuhan University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations