Advertisement

Design of Mixed Metal Oxides with Increased Catalytic Activity for Fischer–Tropsch Synthesis

  • Sania Saheli
  • Ali Reza RezvaniEmail author
  • Somayeh Rigi
  • Michal Dusek
  • Vaclav Eigner
  • Marketa Jarosova
Article
  • 17 Downloads

Abstract

Two sets of Co–Ni/SiO2 and Co–Ni/Al2O3 catalysts for the Fischer–Tropsch synthesis were synthesized by a new method of thermal decomposition of inorganic precursors and by a standard impregnation method, the latter used as a reference method. The inorganic precursors necessary for the thermal decomposition were based on a new complex formulated as [Co1.68Ni1.32(btc)2(H2O)14]·4H2O and characterized by elemental analysis, FT-IR spectroscopy, and the single crystal analysis. The synthesized and reference catalysts were characterized by FT-IR, XRD, SEM, and BET. Their catalytic performances were evaluated in the fixed bed micro reactor for running the Fischer–Tropsch synthesis (FTS). According to the results, the new method based on thermal decomposition of inorganic precursors is superior to the impregnation method, giving rise to more active catalysts with larger active area.

Graphic Abstract

Keywords

Fischer–Tropsch synthesis Mixed metal oxide Inorganic precursor Impregnation Reproducible energy 

Notes

Acknowledgements

The authors are grateful to University of Sistan and Bluchestan for the support of this work. The crystallographic part was supported by the Project 18-10504S of the Czech Science Foundation using instruments of the ASTRA lab established within the Operation program Prague Competitiveness—Project CZ.2.16/3.1.00/24510.

Supplementary material

10562_2019_2886_MOESM1_ESM.docx (16 mb)
Supplementary material 1 (DOCX 16421 kb)

References

  1. 1.
    Steynberg AP, Nel HG (2004) Clean coal conversion options using Fischer-Tropsch technology. Fuel 83(6):765–770Google Scholar
  2. 2.
    Schulz H (1999) Short history and present trends of Fischer-Tropsch synthesis. Appl Catal A 186(1–2):3–12Google Scholar
  3. 3.
    Baliban RC, Elia JA, Weekman V, Floudas CA (2012) Process synthesis of hybrid coal, biomass, and natural gas to liquids via Fischer-Tropsch synthesis, ZSM-5 catalytic conversion, methanol synthesis, methanol-to-gasoline, and methanol-to-olefins/distillate technologies. Comput Chem Eng 47:29–56Google Scholar
  4. 4.
    Höök M, Aleklett K (2010) A review on coal-to-liquid fuels and its coal consumption. Int J Energy Res 34(10):848–864Google Scholar
  5. 5.
    Xiaoping DAI, Changchun YU, Ranjia LI, Haibo SHI, Shikong SHEN (2006) Role of CeO2 promoter in Co/SiO2 catalyst for Fischer-Tropsch synthesis. Chin J Catal 27(10):904–910Google Scholar
  6. 6.
    Dry ME (2002) The fischer–tropsch process: 1950–2000. Catal Today 71(3–4):227–241Google Scholar
  7. 7.
    Van Der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review. Catal Rev 41(3–4):255–318Google Scholar
  8. 8.
    King DL, Cusumano JA, Garten RL (1981) A technological perspective for catalytic processes based on synthesis gas. Catal Rev Sci Eng 23(1–2):233–263Google Scholar
  9. 9.
    Botes FG, Breman BB (2006) Development and testing of a new macro kinetic expression for the iron-based low-temperature Fischer–Tropsch reaction. Ind Eng Chem Res 45(22):7415–7426Google Scholar
  10. 10.
    Voss GJ, Fløystad JB, Voronov A, Rønning M (2015) The state of nickel as promotor in cobalt Fischer-Tropsch synthesis catalysts. Top Catal 58(14–17):896–904Google Scholar
  11. 11.
    Ishihara T, Horiuchi N, Inoue T, Eguchi K, Takita Y, Arai H (1992) Effect of alloying on CO hydrogenation activity over SiO2-supported Co–Ni alloy catalysts. J Catal 136(1):232–241Google Scholar
  12. 12.
    Enger BC, Holmen A (2012) Nickel and Fischer-Tropsch synthesis. Catalysis Reviews 54(4):437–488Google Scholar
  13. 13.
    Ishihara T, Eguchi K, Arai H (1987) Hydrogenation of carbon monoxide over SiO2-supported Fe-Co, Co-Ni and Ni-Fe bimetallic catalysts. Appl Catal 30(2):225–238Google Scholar
  14. 14.
    Zare A, Zare A, Shiva M, Mirzaei AA (2013) Effect of calcination and reaction conditions on the catalytic performance of Co–Ni/Al2O3 catalyst for CO hydrogenation. J Ind Eng Chem 19(6):1858–1868Google Scholar
  15. 15.
    Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts. Catal Lett 77(4):197–205Google Scholar
  16. 16.
    Fegley B Jr, White P, Bowen HK (1985) Preparation of zirconia-alumina powders by zirconium alkoxide hydrolysis. J Am Ceram Soc 68(2):C-60Google Scholar
  17. 17.
    Saheli S, Rezvani AR, Malekzadeh A (2017) Study of structural and catalytic properties of Ni catalysts prepared from inorganic complex precursor for Fischer-Tropsch synthesis. J Mol Struct 1144:166–172Google Scholar
  18. 18.
    Saheli S, Rezvani AR, Malekzadeh A, Dusek M, Eigner V (2018) Novel inorganic precursors [Co4.32 Zn1.68 (HCO2)18 (C2H8N)6]/SiO2 and Co4.32Zn1.68(HCO2)18(C2H8N)6]/Al2O3 for Fischer–Tropsch synthesis. Int J Hydrogen Energy 43(2):685–694Google Scholar
  19. 19.
    Razmara Z, Rezvani AR, Saravani H (2017) Fischer-Tropsch reaction over a Co2-Ni-Mn/SiO2 nanocatalyst prepared by thermal decomposition of a new precursor. Chem Pap 71(4):849–856Google Scholar
  20. 20.
    Janani H, Rezvani AR, Grivani GH, Mirzaei AA (2015) Fischer-Tropsch synthesis of hydrocarbons over new Co/Ce bimetallic catalysts derived from dipicolinate and carbonyl metal complexes. J Inorg Organomet Polym Mater 25(5):1169–1182Google Scholar
  21. 21.
    Janani H, Rezvani AR, Grivani GH, Mirzaei AA (2016) Preparation and characterization of a new cobalt hydrazone complex and its catalytic activity in the hydrogenation of carbon monoxide (Fischer–Tropsch synthesis). React Kinet Mech Catal 117(1):189–203Google Scholar
  22. 22.
    Saheli S, Rezvani AR, Malekzadeh A, Dusek M, Eigner V (2018) Effect of synthetic route and metal oxide promoter on cobalt-based catalysts for Fischer-Tropsch synthesis. Catal Lett 148(11):3557–3569Google Scholar
  23. 23.
    Palatinus L, Chapuis G (2007) SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40(4):786–790Google Scholar
  24. 24.
    Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229(5):345–352Google Scholar
  25. 25.
    Zhu HF, Sun WY, Okamura TA, Ueyama N (2003) Hydrothermal synthesis and structural characterization of one-dimensional coordination polymers of cobalt (II) and nickel (II) with 1, 3, 5-benzenetriacetic acid. Inorg Chem Commun 6(2):168–173Google Scholar
  26. 26.
    Wang XL, Li J, Lin HY, Hu HL, Chen BK, Mu B (2009) Synthesis, structures and electrochemical properties of two novel metal–organic coordination complexes based on trimesic acid (H3BTC) and 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (BPO). Solid State Sci 11(12):2118–2124Google Scholar
  27. 27.
    Wang XL, Luan J, Lu QL, Lin HY, Xu C (2012) Three new metal–organic complexes derived from N, N′-bis (3-pyridinecarboxamide)-1,2-ethane and polycarboxylate ligands: synthesis, fluorescent and electrochemical properties. J Organomet Chem 719:1–7Google Scholar
  28. 28.
    Saheli S, Rezvani A (2017) A novel coordination polymer of Ni (II) based on 1, 3, 5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties. J Mol Struct 1127:583–589Google Scholar
  29. 29.
    Fixman EM, Abello MC, Gorriz OF, Arrúa LA (2007) Preparation of Cu/SiO2 catalysts with and without tartaric acid as template via a sol–gel process: characterization and evaluation in the methanol partial oxidation. Appl Catal A 319:111–118Google Scholar
  30. 30.
    Ermakova MA, Ermakov DY (2002) Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition. Catal Today 77(3):225–235Google Scholar
  31. 31.
    Ma MG, Zhu JF (2009) A facile solvothermal route to synthesis of γ-alumina with bundle-like and flower-like morphologies. Mater Lett 63(11):881–883Google Scholar
  32. 32.
    Feyzi M, Mirzaei AA, Bozorgzadeh HR (2010) Effects of preparation and operation conditions on precipitated iron nickel catalysts for Fischer-Tropsch synthesis. J Nat Gas Chem 19(3):341–353Google Scholar
  33. 33.
    Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233(1–2):263–281Google Scholar
  34. 34.
    Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A 161(1–2):59–78Google Scholar
  35. 35.
    Prieto G, Martínez A, Concepción P, Moreno-Tost R (2009) Cobalt particle size effects in Fischer-Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J Catal 266(1):129–144Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sania Saheli
    • 1
  • Ali Reza Rezvani
    • 1
    Email author
  • Somayeh Rigi
    • 1
  • Michal Dusek
    • 2
  • Vaclav Eigner
    • 2
  • Marketa Jarosova
    • 2
  1. 1.Department of ChemistryUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Institute of Physics of the Czech Academy of SciencesPrague 8Czech Republic

Personalised recommendations