Advertisement

Bis-quinoline-2-carboxylic acid Copper Salt as an Efficient Catalyst for Synthesis of Aryl Olefins by Heck Reaction

  • Minghui Zuo
  • Zhuofei Li
  • Wanyong Fu
  • Rui Guo
  • Chuanfu Hou
  • Weihao Guo
  • Zhizhong Sun
  • Wenyi ChuEmail author
Article
  • 11 Downloads

Abstract

A bis-quinoline-2-carboxylic acid copper salt as a single crystal was prepared and characterized by X-ray single crystal analysis. The crystal as a catalyst was applied to the Mizoroki–Heck coupling reaction between arylboronic acids and α-olefins. A series of diarylethenes and aryl olefins were synthesized with good to excellent yields at room temperature. The catalytic system exhibited good functional group tolerance and low pollution.

Graphic Abstract

A bis-quinoline-2-carboxylic acid copper salt as a single crystal was prepared and characterized by X-ray single crystal analysis. The crystal as a catalyst was applied to the Mizoroki–Heck coupling reaction between arylboronic acids and α-olefins Open image in new window .

Keywords

Bis-quinoline-2-carboxylic acid copper salt Single crystal Mizoroki–Heck reaction Diarylethene Aryl olefins 

Notes

Acknowledgements

This work was supported by Fund of Natural Science Foundation of Heilongjiang Province of China (No. B2018012).

Supplementary material

10562_2019_2885_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1204 kb)

References

  1. 1.
    Matsuura R, Jankins TC, Hill DE, Yang KS, Gallego GM, Yang SL, He MY, Wang F, Marsters RP, McAlpine I, Engle KM (2018) Chem Sci 9:8363CrossRefGoogle Scholar
  2. 2.
    Ie Y, Nishida K, Karakawa M, Tada H, Aso Y (2011) J Org Chem 76:6604CrossRefGoogle Scholar
  3. 3.
    Selvarasu C, Kannan P (2017) J Mol Struct 648:77Google Scholar
  4. 4.
    Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q (2015) Chem Rev 44:3760Google Scholar
  5. 5.
    Prukała W, Kędzia B (1999) Farmaco 54:584CrossRefGoogle Scholar
  6. 6.
    Huo SQ, Negishi E (2001) Org Lett 3:3253CrossRefGoogle Scholar
  7. 7.
    Dr Prunet J (2003) Angew Chem 42:2826CrossRefGoogle Scholar
  8. 8.
    Dong D, Li H, Tian S (2010) J Am Chem Soc 132:5018CrossRefGoogle Scholar
  9. 9.
    Jun DJ, Li Y, Wang JQ, Tian SK (2011) Chem Commun 47:2158CrossRefGoogle Scholar
  10. 10.
    Harwood HJ Jr, Barbacci-Tobin EG, Petras SF, Lindsey S, Pellarin LD (1997) Biochem Pharm 53:839CrossRefGoogle Scholar
  11. 11.
    Wang L, Zheng Z, Yu Z, Zheng J, Fang M, Wu J, Tian Y, Zhou H (2013) J Mater Chem C 1:952Google Scholar
  12. 12.
    Qian XM, Melkamu T, Upadhyaya P, Kassie F (2011) Cancer Lett 311:57CrossRefGoogle Scholar
  13. 13.
    Mattila P, Hellström J, Törrönen R (2006) J Agric Food Chem 54:7193CrossRefGoogle Scholar
  14. 14.
    Lin WZ, Navaratnam S, Yao S (1998) Radiat Phys Chem 53:425CrossRefGoogle Scholar
  15. 15.
    Yang J, Marriner GA, Wang XY, Bowman PD, Kerwan S, Stavchansky S (2010) Bioorg Med Chem 18:5032CrossRefGoogle Scholar
  16. 16.
    Gurak AJ, Engle MK (2018) ACS Catal 8:8987CrossRefGoogle Scholar
  17. 17.
    Kurandina D, Parasram M, Gevorgyan PV (2017) Angew Chem 129:14400CrossRefGoogle Scholar
  18. 18.
    Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009CrossRefGoogle Scholar
  19. 19.
    Felpin FX, Hardy LN, Callonnec FL, Fouquet E (2011) Tetrahedron 67:2815CrossRefGoogle Scholar
  20. 20.
    Cartney M, Guiry D, Guiry PJ (2011) Chem Rev 40:5122Google Scholar
  21. 21.
    Magano J, Dunetz JR (2011) Chem Rev 111:2177CrossRefGoogle Scholar
  22. 22.
    Teguo PW, Lee D, Cuendet M, Merillon JM, Pezzuto JM, Kinghorn AD (2001) J Nat Prod 64:136CrossRefGoogle Scholar
  23. 23.
    Kraft A, Grimsdale AC, Holmes AB (1998) Angew Chem 37:402CrossRefGoogle Scholar
  24. 24.
    Martin RE, Diederich F (1999) Angew Chem 38:1350CrossRefGoogle Scholar
  25. 25.
    Yuan LH, Xu Y, Hu XB, Yang GQ, Wu Y (2015) J Mol Catal Chem 396:55CrossRefGoogle Scholar
  26. 26.
    Uno D, Minami H, Otsuka S, Nogi K, Yorimitsu H (2018) Chem Asian J 13:2397CrossRefGoogle Scholar
  27. 27.
    Jadhav SN, Rode CV (2017) Green Chem 19:5958CrossRefGoogle Scholar
  28. 28.
    Roy T, Brandt P, Wetzel A, Bergman J, Brånalt J, Sävmarker J, Larhed M (2017) Org Lett 19:2738CrossRefGoogle Scholar
  29. 29.
    Mboyi CD, Testa C, Reeb S, Genc S, Cattey H, Fleurat-Lessard P, Roger J, Hierso JC (2017) ACS Catal 7:8493CrossRefGoogle Scholar
  30. 30.
    Liwosz TW, Chemler SR (2013) Org Lett 15:3034CrossRefGoogle Scholar
  31. 31.
    Hamasaka G, Ichii S, Uozumi Y (2018) Adv Synth Catal 360:1833CrossRefGoogle Scholar
  32. 32.
    Nishikata T, Noda Y, Fujimoto R, Sakashita T (2013) J Am Chem Soc 135:16372CrossRefGoogle Scholar
  33. 33.
    Farrington EJ, Brown JM, Barnard CF (2002) Angew Chem 41:169CrossRefGoogle Scholar
  34. 34.
    Tobisu M, Koh K, Furukawa T, Chatani N (2012) Angew Chem 51:1363CrossRefGoogle Scholar
  35. 35.
    Wang H, Yu Y, Hong XH, Xu B (2014) Chem Commun 50:13485CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Minghui Zuo
    • 1
    • 2
  • Zhuofei Li
    • 1
    • 2
  • Wanyong Fu
    • 1
    • 2
  • Rui Guo
    • 1
    • 2
  • Chuanfu Hou
    • 1
    • 2
  • Weihao Guo
    • 1
    • 2
  • Zhizhong Sun
    • 1
    • 2
  • Wenyi Chu
    • 1
    • 2
    Email author
  1. 1.School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinPeople’s Republic of China
  2. 2.Key Laboratory of Chemical Engineering Process and Technology for High-efficiency ConversionCollege of Heilongjiang ProvinceHarbinPeople’s Republic of China

Personalised recommendations