Hierarchical Porous Carbon-Supported Copper Nanoparticles as an Efficient Catalyst for the Dimethyl Carbonate Synthesis

  • Yongli Pei
  • Jinxian Zhao
  • Ruina Shi
  • Xuhui Wang
  • Zhong Li
  • Jun RenEmail author


A series of three-dimensional (3D)-interconnected hierarchical porous carbons (HPCs) were prepared through a “leavening” strategy. α-Cellulose and NaHCO3 were used as a raw material and foaming agent, respectively, to support copper catalysts (Cu/HPC) for dimethyl carbonate (DMC) synthesis by the oxidative carbonylation of methanol. The calcination temperature had a significant influence on the textural properties of the HPC and the catalytic performance of the Cu/HPC. The catalyst calcined at 900 °C exhibited the highest catalytic activity with a DMC space–time yield of 2018 mg/(g h). The characterization results indicated that the outstanding catalytic activity was related to the highest dispersion of copper species and to a high content of surface Cu0 species, which can be attributed mainly to the enhanced anchoring effect of abundant micro- and mesopores of a 3D-interconnected network. In addition, the well-developed 3D-interconnected hierarchical porous structure provided a rapid and efficient channel for reactant and product transport and migration, which enhanced the catalytic performance. This work expands the potential application range of HPC materials and presents a novel procedure to prepare catalysts for DMC synthesis.

Graphic Abstract


Biomass-derived hierarchical porous carbon Copper catalyst Dimethyl carbonate 



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21776194, 21606159 and 21808154) and Key Research and Development Program of Shanxi Province (Grant No. 201703D121022-1).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Tundo P, Selva M (2002) Acc Chem Res 35:706–716CrossRefGoogle Scholar
  2. 2.
    Keller N, Rebmann G, Keller V (2010) J Mol Catal A 317:1–18CrossRefGoogle Scholar
  3. 3.
    Huang SY, Yan B, Wang SP, Ma XB (2015) Chem Soc Rev 44:3079–3116CrossRefGoogle Scholar
  4. 4.
    Wang MH, Wang H, Zhao N, Wei W, Sun YH (2006) Catal Commun 7:6–10CrossRefGoogle Scholar
  5. 5.
    Wang JQ, Sun J, Cheng WG, Shi CY, Dong K, Zhang XP, Zhang SJ (2012) Catal Sci Technol 2:600–605CrossRefGoogle Scholar
  6. 6.
    Tan HZ, Wang ZQ, Xu ZN, Sun J, Xu YP, Chen QS, Chen Y, Guo GC (2018) Catal Today 316:2–12CrossRefGoogle Scholar
  7. 7.
    Han MS, Lee BG, Ahn BS, Kim HS, Moon DJ, Hong SI (2003) J Mol Catal A 203:137–143CrossRefGoogle Scholar
  8. 8.
    Delledonne D, Rivetti F, Fomano U (2001) Appl Catal A 221:241–251CrossRefGoogle Scholar
  9. 9.
    Romano U, Tesei R, Cipriani G, Micucci L (1980) US Patent 4,218,391Google Scholar
  10. 10.
    Curnutt GL (1991) US Patent 5004827-A, 2 Apr 1991Google Scholar
  11. 11.
    Gong JL, Ma XB, Wang SP (2007) Appl Catal A 316:1–21CrossRefGoogle Scholar
  12. 12.
    Dang TTH, Bartoszek M, Schneider M, Hoang DL, Bentrup U, Martin A (2012) Appl Catal B 121–122:115–122CrossRefGoogle Scholar
  13. 13.
    Anderson SA, Root TW (2003) J Catal 217:396–405CrossRefGoogle Scholar
  14. 14.
    Tomishige K, Sakaihori T, Sakai SI, Fujimoto K (1999) Appl Catal A 181:95–102CrossRefGoogle Scholar
  15. 15.
    Jiang RX, Wang YJ, Zhao XQ, Wang SF, Jin CQ, Zhang CF (2002) J Mol Catal A 185:159–166CrossRefGoogle Scholar
  16. 16.
    Briggs DN, Lawrence KH, Bell AT (2009) Appl Catal A 366:71–83CrossRefGoogle Scholar
  17. 17.
    Ding XS, Dong XM, Kuang DT, Wang SF, Zhao XQ, Wang YJ (2014) Chem Eng J 240:221–227CrossRefGoogle Scholar
  18. 18.
    Huang SY, Wang Y, Wang ZZ, Yan B, Wang SP, Gong JL, Ma XB (2012) Appl Catal A 417–418:236–242CrossRefGoogle Scholar
  19. 19.
    Rebmann G, Keller V, Ledoux MJ, Keller N (2008) Green Chem 10:207–213CrossRefGoogle Scholar
  20. 20.
    King ST (1996) J Catal 161:530–538CrossRefGoogle Scholar
  21. 21.
    Drake IJ, Zhang YH, Briggs D, Lim B, Chau T, Bell AT (2006) J Phys Chem B 110:11654–11664CrossRefGoogle Scholar
  22. 22.
    Rybakov AA, Bryukhanov IA, Larin AV, Zhidomirov GM (2018) J Phys Chem C 122:5366–5375CrossRefGoogle Scholar
  23. 23.
    Wang YJ, Jiang RX, Zhao XQ, Wang SF (2000) J Nat Gas Chem 9:205–211Google Scholar
  24. 24.
    Zhang GQ, Li Z, Zheng HY, Fu TJ, Ju YB, Wang YC (2015) Appl Catal B 179:95–105CrossRefGoogle Scholar
  25. 25.
    Ren MJ, Ren J, Hao PP, Yang JZ, Wang DL, Pei YL, Lin JY, Li Z (2016) ChemCatChem 8:861–871CrossRefGoogle Scholar
  26. 26.
    Merza G, László B, Oszkó A, Pótári G, Varga E, Erdőhelyi A (2014) Catal Lett 145:881–892CrossRefGoogle Scholar
  27. 27.
    Bell AT (2003) Science 299:1688–1691CrossRefGoogle Scholar
  28. 28.
    Yuan YZ, Cao W, Weng WZ (2004) J Catal 228:311–320CrossRefGoogle Scholar
  29. 29.
    Hao PP, Ren J, Yang LL, Qin ZF, Lin JY, Li Z (2016) Chem Eng J 283:1295–1304CrossRefGoogle Scholar
  30. 30.
    Ren J, Hao PP, Sun W, Shi RN, Liu SS (2017) Chem Eng J 328:673–682CrossRefGoogle Scholar
  31. 31.
    Wang J, Shi RN, Hao PP, Sun W, Liu SS, Li Z, Ren J (2018) J Mater Sci 53:1833–1850CrossRefGoogle Scholar
  32. 32.
    Shi RN, Zhao JX, Liu SS, Sun W, Li HX, Hao PP, Li Z, Ren J (2018) Carbon 130:185–195CrossRefGoogle Scholar
  33. 33.
    Li HX, Zhao JX, Shi RN, Hao PP, Liu SS, Li Z, Ren J (2018) Appl Surf Sci 436:803–813CrossRefGoogle Scholar
  34. 34.
    Fang B, Kim JH, Kim MS, Yu JS (2013) Acc Chem Res 46:1397–1406CrossRefGoogle Scholar
  35. 35.
    Zeng QC, Wu DC, Zou C, Xu F, Fu RW, Li ZH, Liang YR, Su DS (2010) Chem Commun 46:5927–5929CrossRefGoogle Scholar
  36. 36.
    Song C, Du JP, Zhao JH, Feng SA, Du GX, Zhu ZP (2009) Chem Mater 21:1524–1530CrossRefGoogle Scholar
  37. 37.
    Liang J, Zhou RF, Chen XM, Tang YH, Qiao SZ (2014) Adv Mater 26:6074–6079CrossRefGoogle Scholar
  38. 38.
    Yue D, Lei J, Lina Z, Zhenran G, Du X, Li J (2018) Catal Lett 148:1100–1109CrossRefGoogle Scholar
  39. 39.
    Zhao XH, Sun ZP, Zhu ZQ, Li A, Li GX, Wang XL (2013) Catal Lett 143:657–665CrossRefGoogle Scholar
  40. 40.
    Zhang ZP, Sun JT, Wang F, Dai LM (2018) Angew Chemie 57:9038–9043CrossRefGoogle Scholar
  41. 41.
    Tang MH, Deng J, Li MM, Li XF, Li HR, Chen ZR, Wang Y (2016) Green Chem 18:6082–6090CrossRefGoogle Scholar
  42. 42.
    Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chemie 120:379–382CrossRefGoogle Scholar
  43. 43.
    Kubo S, White RJ, Tauer K, Titirici MM (2013) Chem Mater 25:4781–4790CrossRefGoogle Scholar
  44. 44.
    Liu B, Shioyama H, Akita T, Xu Q (2008) J Am Chem Soc 130:5390–5391CrossRefGoogle Scholar
  45. 45.
    Sun ZK, Liu Y, Li B, Wei J, Wang MH, Yue Q, Deng YH, Kaliaguine S, Zhao DY (2013) ACS Nano 7:8706–8714CrossRefGoogle Scholar
  46. 46.
    Dutta S, Bhaumik A, Wu KCW (2014) Energy Environ Sci 7:3574–3592CrossRefGoogle Scholar
  47. 47.
    Deng J, Xiong T, Xu F, Li MM, Han CL, Gong YT, Wang HY, Wang Y (2015) Green Chem 17:4053–4060CrossRefGoogle Scholar
  48. 48.
    Deng J, Xiong TY, Wang HY, Zheng AM, Wang Y (2016) Chem Eng 4:3750–3756Google Scholar
  49. 49.
    Huang WT, Zhang H, Huang YQ, Wang WK, Wei SC (2011) Carbon 49:838–843CrossRefGoogle Scholar
  50. 50.
    Xu GY, Han JP, Ding B, Nie P, Pan J, Dou H, Li HS, Zhang XG (2015) Green Chem 17:1668–1674CrossRefGoogle Scholar
  51. 51.
    Zhao YQ, Lu M, Tao PY, Zhang YJ, Gong XT, Yang Z, Zhang GQ, Li HL (2016) J Power Sources 307:391–400CrossRefGoogle Scholar
  52. 52.
    Zhang XH, Li HX, Zhang K, Wang Q, Qin B, Cao Q, Jin L (2018) J Electrochem Soc 165:A2084–A2092CrossRefGoogle Scholar
  53. 53.
    Jänes A, Thomberg T, Kurig H, Lust E (2009) Carbon 47:23–29CrossRefGoogle Scholar
  54. 54.
    Medina-Carrasco S, Valverde JM (2018) Cryst Growth Des 18:4578–4592CrossRefGoogle Scholar
  55. 55.
    Zhao J, Tran PD, Chen Y, Loo JSC, Barber J, Xu ZJ (2015) ACS Catal 5:4115–4120CrossRefGoogle Scholar
  56. 56.
    Chen C, Luo C, Zhang XH, Li YP, Huang JL, Chen BQ, Chen JH (2017) New J Chem 41:7432–7437CrossRefGoogle Scholar
  57. 57.
    Marchi AJ, Fierro JLG, Santamaría J, Monzón A (1996) Appl Catal A 142:375–386CrossRefGoogle Scholar
  58. 58.
    Chary KVR, Seela KK, Sagar GV, Sreedhar B (2004) J Phys Chem B 108:658–663CrossRefGoogle Scholar
  59. 59.
    Bond GC, Namijo SN, Wakeman JS (1991) J Mol Catal 64:305–319CrossRefGoogle Scholar
  60. 60.
    Chang FW, Kuo WY, Lee KC (2003) Appl Catal A 246:253–264CrossRefGoogle Scholar
  61. 61.
    Wang WZ, Wang GH, Wang XS, Zhan YJ, Liu YK, Zheng CL (2002) Adv Mater 14:67–69CrossRefGoogle Scholar
  62. 62.
    Mondal P, Sinha A, Salam N, Roy AS, Jana NR, Islam SM (2013) RSC Adv 3:5615–5623CrossRefGoogle Scholar
  63. 63.
    Espinós JP, Morales J, Barranco A, Caballero A, Holgado JP, González-Elipe AR (2002) J Phys Chem B 106:6921–6929CrossRefGoogle Scholar
  64. 64.
    Raimondi F, Geissler K, Wambach J, Wokaunn K (2002) Appl Surf Sci 189:59–71CrossRefGoogle Scholar
  65. 65.
    Li MM, Deng J, Lan YK, Wang Y (2017) ChemistrySelect 2:8486–8492CrossRefGoogle Scholar
  66. 66.
    Zhao YJ, Guo ZY, Zhang HJ, Peng B, Xu YX, Wang Y, Zhang J, Xu Y, Wang SP, Ma XB (2018) J Catal 357:223–237CrossRefGoogle Scholar
  67. 67.
    Wang S, Yan LH, Zhao YS, Ma YR, Wu GQ, Wu JF, Zeng SH (2019) Appl Surf Sci 464:294–300CrossRefGoogle Scholar
  68. 68.
    Wang HX, Zhou LM, Han M, Tao ZL, Cheng FY, Chen J (2015) J Alloys Compd 651:382–388CrossRefGoogle Scholar
  69. 69.
    Ren J, Wang W, Wang DL, Zuo ZJ, Lin JY, Li Z (2014) Appl Catal A 472:47–52CrossRefGoogle Scholar
  70. 70.
    Ry W, Li Z, Zheng HY, KC X (2010) Chin J Catal 31:851–856Google Scholar
  71. 71.
    Zou C, Wu DC, Li MZ, Zeng QC, Xu F, Huang ZY, Fu RW (2010) J Mater Chem 20:731–735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yongli Pei
    • 1
  • Jinxian Zhao
    • 1
  • Ruina Shi
    • 1
  • Xuhui Wang
    • 1
  • Zhong Li
    • 1
  • Jun Ren
    • 1
    Email author
  1. 1.Key Laboratory of Coal Science and Technology (Taiyuan University of Technology), Ministry of Education and Shanxi ProvinceTaiyuanChina

Personalised recommendations