Advertisement

Catalysis Letters

, Volume 149, Issue 11, pp 2984–2993 | Cite as

Mesoporous Hierarchically Hollow Flower-Like CoAl-LDH@N,S-doped Graphene@Pd Nanoarchitectures for Heck Couplings

  • Sahar Rohani
  • Ghodsi Mohammadi ZiaraniEmail author
  • Alireza Badiei
  • Abolfazl Ziarati
  • Rafael Luque
Article

Abstract

A smart strategy for the synthesis of hierarchical CoAl-LDH hollow spheres assembled with nitrogen and sulfur co-doped graphene for high holding of palladium nanoparticles (CoAl-LDH@N,S-G@Pd) is reported. This architecture exhibited excellent activity in Heck reactions with TOF as high as 1633 h−1 due to a strong metal–support interaction, good electron transfers and high surface area.

Graphic Abstract

Keywords

Heterogeneous catalysis Heck coupling Nanostructure Layered double hydroxide N, S doped graphene 

Notes

Acknowledgements

The financial support from the research council of Alzahra University and the University of Tehran are gratefully acknowledged. The publication was prepared with support from RUDN University Program 5-100.

Supplementary material

10562_2019_2880_MOESM1_ESM.doc (4.1 mb)
Supplementary material 1 (DOC 4188 kb)

References

  1. 1.
    Heck R, Nolley JJ (1972) J Org Chem 37:2320–2322CrossRefGoogle Scholar
  2. 2.
    Phan NT, Van Der Sluys M, Jones CW (2006) Adv Synth Catal 348:609–679CrossRefGoogle Scholar
  3. 3.
    Shi S, Nawaz KS, Zaman MK, Sun Z (2018) Catalysts 8:90CrossRefGoogle Scholar
  4. 4.
    Yang J, Zhao HW, He J, Zhang CP (2018) Catalysts 8:23CrossRefGoogle Scholar
  5. 5.
    Farina V (2004) Adv Synth Catal 346:1553–1582CrossRefGoogle Scholar
  6. 6.
    Yin L, Liebscher J (2007) Chem Rev 107:133–173CrossRefPubMedGoogle Scholar
  7. 7.
    Molnar A (2011) Chem Rev 111:2251–2320CrossRefPubMedGoogle Scholar
  8. 8.
    Veerakumar P, Thanasekaran P, Lu KL, Liu SB, Rajagopal S (2017) ACS Sustain Chem Eng 5:6357–6376CrossRefGoogle Scholar
  9. 9.
    Biffis A, Centomo P, Del Zotto A, Zecca M (2018) Chem Rev 118:2249–2295CrossRefPubMedGoogle Scholar
  10. 10.
    Choudary BM, Madhi S, Chowdari NS, Kantam ML, Sreedhar B (2002) J Am Chem Soc 124:14127–14136CrossRefPubMedGoogle Scholar
  11. 11.
    Fan G, Li F, Evans DG, Duan X (2014) Chem Soc Rev 43:7040–7066CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Q, O’Hare D (2012) Chem Rev 112:4124–4155CrossRefPubMedGoogle Scholar
  13. 13.
    Li F, Duan X (2006) Layered double hydroxides. Springer, Heidelberg, pp 193–223CrossRefGoogle Scholar
  14. 14.
    Barros SD, Senra JD, Lachter ER, Malta LFB (2016) Catal Rev 58:439–496CrossRefGoogle Scholar
  15. 15.
    Li P, Huang PP, Wei FF, Sun YB, Cao CY, Song WG (2014) J Mater Chem A 2:12739–12745CrossRefGoogle Scholar
  16. 16.
    Wang Q, Chen L, Guan S, Zhang X, Wang B, Cao X, Yu Z, He Y, Evans DG, Feng J (2018) ACS Catal 8:3104–3115CrossRefGoogle Scholar
  17. 17.
    Peng W, Li H, Liu Y, Song S (2017) Appl Mater Today 7:201–211CrossRefGoogle Scholar
  18. 18.
    He F, Hu Z, Liu K, Zhang S, Liu H, Sang S (2014) J Power Sources 267:188–196CrossRefGoogle Scholar
  19. 19.
    Zhang R, An H, Li Z, Shao M, Han J, Wei M (2016) Chem Eng J 289:85–92CrossRefGoogle Scholar
  20. 20.
    Malak-Polaczyk A, Vix-Guterl C, Frackowiak E (2010) Energy Fuel 24:3346–3351CrossRefGoogle Scholar
  21. 21.
    Jiang Y, Song Y, Li Y, Tian W, Pan Z, Yang P, Li Y, Gu Q, Hu L (2017) ACS Appl Mater Interfaces 9:37645–37654CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang L, Hui K, Hui K, Chen X, Chen R, Lee H (2016) Int J Hydrog Energy 41:9443–9453CrossRefGoogle Scholar
  23. 23.
    Memon J, Sun J, Meng D, Ouyang W, Memon MA, Huang Y, Yan S, Geng J (2014) J Mater Chem A 2:5060–5067CrossRefGoogle Scholar
  24. 24.
    Huang L, Liu B, Hou H, Wu L, Zhu X, Hu J, Yang J (2018) J Alloys Compd 730:71–80CrossRefGoogle Scholar
  25. 25.
    Wang Y, Dou L, Zhang H (2017) ACS Appl Mater Interfaces 9:38784–38795CrossRefPubMedGoogle Scholar
  26. 26.
    Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang GH, Schüth F (2016) Chem Rev 116:14056–14119CrossRefPubMedGoogle Scholar
  27. 27.
    Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Chem Rev 116:10983–11060CrossRefPubMedGoogle Scholar
  28. 28.
    Xu X, Chu H, Zhang Z, Dong P, Baines R, Ajayan PM, Shen J, Ye M (2017) ACS Appl Mater Interfaces 9:32756–32766CrossRefPubMedGoogle Scholar
  29. 29.
    Ziarati A, Badiei A, Luque R, Ouyang W (2018) J Mater Chem A 6:8962–8968CrossRefGoogle Scholar
  30. 30.
    Ziarati A, Badiei A, Luque R (2019) Appl Catal B 240:72–78CrossRefGoogle Scholar
  31. 31.
    Rohani S, Mohammadi Ziarani G, Badiei A, Ziarati A, Jafari M, Shayesteh A (2018) Appl Organomet Chem 32:4397CrossRefGoogle Scholar
  32. 32.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  33. 33.
    Wei C, Wang L, Dang L, Chen Q, Lu Q, Gao F (2015) Sci Rep 5:10599CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang B, Chen JS, Wu HB, Wang Z, Lou XW (2011) J Am Chem Soc 133:17146–17148CrossRefPubMedGoogle Scholar
  35. 35.
    Zhao S, Hu F, Li J (2016) ACS Catal 6:3433–3441CrossRefGoogle Scholar
  36. 36.
    Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) J Am Chem Soc 128:4872–4880CrossRefPubMedGoogle Scholar
  37. 37.
    Dou L, Zhang H (2016) J Mater Chem A 4:18990–19002CrossRefGoogle Scholar
  38. 38.
    Wimalasiri Y, Fan R, Zhao X, Zou L (2014) Electrochim Acta 134:127–135CrossRefGoogle Scholar
  39. 39.
    Xu J, Gai S, He F, Niu N, Gao P, Chen Y, Yang P (2014) J Mater Chem A 2:1022–1031CrossRefGoogle Scholar
  40. 40.
    Xie R, Fan G, Ma Q, Yang L, Li F (2014) J Mater Chem A 2:7880–7889CrossRefGoogle Scholar
  41. 41.
    Palmer SJ, Nguyen T, Frost RL (2007) J Raman Spectrosc 38:1602–1608CrossRefGoogle Scholar
  42. 42.
    Wang X, Wang Q, Hou X, Liu Y, Zheng P, Huo J, Yin L, Guo S (2018) J Alloys Compd 744:196–203CrossRefGoogle Scholar
  43. 43.
    Zhang X, Zhu J, Tiwary CS, Ma Z, Huang H, Zhang J, Lu Z, Huang W, Wu Y (2016) ACS Appl Mater Interfaces 8:10858–10865CrossRefPubMedGoogle Scholar
  44. 44.
    Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Angew Chem Int Ed 125:7954–7958CrossRefGoogle Scholar
  45. 45.
    Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) J Phys Chem C 115:17009–17019CrossRefGoogle Scholar
  46. 46.
    Xiao L, Yin J, Li Y, Yuan Q, Shen H, Hu G, Gan W (2016) Analyst 141:5555–5562CrossRefPubMedGoogle Scholar
  47. 47.
    Zhao H, Zhu YP, Ge L, Yuan ZY (2017) Int J Hydrog Energy 42:19010–19018CrossRefGoogle Scholar
  48. 48.
    Dou Y, Zhang S, Pan T, Xu S, Zhou A, Pu M, Yan H, Han J, Wei M, Evans DG (2015) Adv Funct Mater 25:2243–2249CrossRefGoogle Scholar
  49. 49.
    Meku E, Du C, Sun Y, Du L, Wang Y, Yin G (2016) J Electrochem Soc 163:F132–F138CrossRefGoogle Scholar
  50. 50.
    Hajipour AR, Rezaei F, Khorsandi Z (2017) Green Chem 19:1353–1361CrossRefGoogle Scholar
  51. 51.
    Zhao J, Shao M, Yan D, Zhang S, Lu Z, Li Z, Cao X, Wang B, Wei M, Evans DG (2013) J Mater Chem A 1:5840–5846CrossRefGoogle Scholar
  52. 52.
    Jahanshahi R, Akhlaghinia B (2017) Catal Lett 147:2640–2655CrossRefGoogle Scholar
  53. 53.
    Heck RF (2004) Org React 27:345–390Google Scholar
  54. 54.
    Li H, Johansson Seechurn CC, Colacot TJ (2012) ACS Catal 2:1147–1164CrossRefGoogle Scholar
  55. 55.
    Hamasaka G, Ichii S, Uozumi Y (2018) Adv Synth Catal 360:1833–1840CrossRefGoogle Scholar
  56. 56.
    Zhou H, Zhuo GL, Jiang XZ (2006) J Mol Catal A: Chem 248:26–31CrossRefGoogle Scholar
  57. 57.
    Choudary BM, Kantam ML, Reddy NM, Gupta NM (2002) Catal Lett 82:79–83CrossRefGoogle Scholar
  58. 58.
    Khalafi-Nezhad A, Panahi F (2011) Green Chem 13:2408–2415CrossRefGoogle Scholar
  59. 59.
    Tukhani M, Panahi F, Khalafi-Nezhad A (2017) ACS Sustain Chem Eng 6:1456–1467CrossRefGoogle Scholar
  60. 60.
    Rathod J, Sharma P, Pandey P, Singh A, Kumar P (2017) J Porous Mater 24:837–846CrossRefGoogle Scholar
  61. 61.
    Movassagh B, Rezaei N (2015) New J Chem 39:7988–7997CrossRefGoogle Scholar
  62. 62.
    Rostamnia S, Rahmani T (2015) Appl Organomet Chem 29:471–474CrossRefGoogle Scholar
  63. 63.
    Li Y, Xu L, Xu B, Mao Z, Xu H, Zhong Y, Zhang L, Wang B, Sui X (2017) ACS Appl Mater Interfaces 9:17155–17162CrossRefPubMedGoogle Scholar
  64. 64.
    Zhou A, Guo RM, Zhou J, Dou Y, Chen Y, Li JR (2018) ACS Sustain Chem Eng 6:2103–2111CrossRefGoogle Scholar
  65. 65.
    Jana S, Dutta B, Bera R, Koner S (2008) Inorg Chem 47:5512–5520CrossRefPubMedGoogle Scholar
  66. 66.
    Zafar M, Zahra S, Tahir M, Mughal E, Nazar M, Rafique H (2018) Turk J Chem 42:63–74CrossRefGoogle Scholar
  67. 67.
    Zhang SY, Yu K, Guo YS, Mou RQ, Lu XF, Guo DS (2018) ChemistryOpen 7:803–813CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sahar Rohani
    • 1
  • Ghodsi Mohammadi Ziarani
    • 1
    Email author
  • Alireza Badiei
    • 2
  • Abolfazl Ziarati
    • 2
  • Rafael Luque
    • 3
    • 4
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of AlzahraTehranIran
  2. 2.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  3. 3.Departamento de Quimica OrganicaUniversidad de CordobaCórdobaSpain
  4. 4.Peoples Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations