Advertisement

Catalysis Letters

, Volume 149, Issue 11, pp 3058–3065 | Cite as

ZIF-67 Derived Hollow Structured Co3O4 Nanocatalysts: Tunable Synthetic Strategy Induced Enhanced Catalytic Performance

  • Changyu Zhang
  • Wei Chu
  • Ruiyu Jiang
  • Lei LiEmail author
  • Qilei Yang
  • Yan Cao
  • Jinlong YanEmail author
Article
  • 166 Downloads

Abstract

Two different hollow structured Co3O4 micro-polyhedrons, derived from Zeolitic imidazolate frameworks (ZIF)-67 crystals, were fabricated by tuning the synthetic strategy (positive or reverse addition). The results demonstrate that the synthetic strategy significantly affect catalyst structure and properties. Compared with Co3O4-A nanocatalyst, the Co3O4-B nanocatalyst exhibit superior catalytic performance, showing 100% CO conversion at the conditions of T = 110 °C and SV = 30,000 h−1. The higher catalytic performance could be attributed to its higher surface area, lower temperature reducibility, and abundant surface Co3+ and adsorbed oxygen.

Graphic Abstract

Two different hollow structured Co3O4 micro-polyhedrons, derived from Zeolitic imidazolate frameworks (ZIF)-67 crystals, were fabricated by tuning the synthetic strategy (positive or reverse addition). The Co3O4-B nanocatalyst exhibit superior catalytic performance, which should be attributed to its higher surface area, lower temperature reducibility, and abundant surface Co3+ and adsorbed oxygen.

Keywords

Synthetic strategy Co3O4 nanocatalyst Hollow structure Zeolitic imidazolate frameworks CO oxidation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21503184), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJA610004), and the Natural Science Foundation of Jiangsu Province-General Program (BK20171273).

References

  1. 1.
    Wang X, Feng JI, Bai Y, Zhang Q, Yin Y (2016) Chem Rev 116(18):10983–11060CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu W, Chen Z, Pan Y, Dai R, Wu Y, Zhuang Z, Li Y (2018) Adv Mater.  https://doi.org/10.1002/adma.201800426 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhang L, Wu HB, Lou XW (2013) J Am Chem Soc 135(29):10664–10672CrossRefPubMedGoogle Scholar
  4. 4.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341(6149):1230444CrossRefPubMedGoogle Scholar
  5. 5.
    Dang S, Zhu QL, Xu Q (2018) Nat Rev Mater 3(1):17075CrossRefGoogle Scholar
  6. 6.
    Xia W, Mahmood A, Zou R, Xu Q (2015) Energy Environ Sci 8(7):1837–1866CrossRefGoogle Scholar
  7. 7.
    Shieh FK, Wang SC, Yen CI, Wu CC, Dutta S, Chou LY, Tsung CK (2015) J Am Chem Soc 137(13):4276–4279CrossRefPubMedGoogle Scholar
  8. 8.
    Chen JE, Fan MS, Chen YL, Deng YH, Kim JH, Alamri HR, Wu KCW (2017) Chem A Eur J 23(54):13284–13288CrossRefGoogle Scholar
  9. 9.
    Lü Y, Zhan W, He Y, Wang Y, Kong X, Kuang Q, Zheng L (2014) ACS Appl Mater Interfaces 6(6):4186–4195CrossRefPubMedGoogle Scholar
  10. 10.
    Li S, Peng S, Huang L, Cui X, Al-Enizi AM, Zheng G (2016) ACS Appl Mater Interfaces 8(32):20534–20539CrossRefPubMedGoogle Scholar
  11. 11.
    Kaneti YV, Dutta S, Hossain MS, Shiddiky MJ, Tung KL, Shieh FK, Yamauchi Y (2017) Adv Mater 29(38):1700213CrossRefGoogle Scholar
  12. 12.
    Zhou S, Ye Z, Hu S, Hao C, Wang X, Huang C, Wu F (2018) Nanoscale 10(33):15771–15781CrossRefPubMedGoogle Scholar
  13. 13.
    Zhong G, Liu D, Zhang J (2018) J Mater Chem A 6(5):1887–1899CrossRefGoogle Scholar
  14. 14.
    Hu L, Sun K, Peng Q, Xu B, Li Y (2010) Nano Res 3(5):363–368CrossRefGoogle Scholar
  15. 15.
    Li Y, Shen W (2014) Chem Soc Rev 43(5):1543–1574CrossRefPubMedGoogle Scholar
  16. 16.
    Iablokov V, Barbosa R, Pollefeyt G, Van Driessche I, Chenakin S, Kruse N (2015) ACS Catal 5(10):5714–5718CrossRefGoogle Scholar
  17. 17.
    Li L, Yao Y, Tang Z, Ji W, Dai Y, Shen X (2016) J Nanosci Nanotechnol 16(7):7573–7578CrossRefGoogle Scholar
  18. 18.
    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M et al (2008) Science 319:939CrossRefPubMedGoogle Scholar
  19. 19.
    Ma CY, Mu Z, Li JJ, Jin YG, Cheng J, Lu GQ, Qiao SZ (2010) J Am Chem Soc 132(8):2608–2613CrossRefPubMedGoogle Scholar
  20. 20.
    Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Wang D (2013) Angew Chem Int Ed 125(25):6545–6548CrossRefGoogle Scholar
  21. 21.
    Luo JY, Meng M, Zha YQ, Guo LHJ (2008) Phys Chem C 112(23):8694–8701CrossRefGoogle Scholar
  22. 22.
    Liu B, Liu Y, Hou H, Liu Y, Wang Q, Zhang J (2015) Catal Sci Technol 5(12):5139–5152CrossRefGoogle Scholar
  23. 23.
    Bai G, Dai H, Deng J, Liu Y, Wang F, Zhao Z, Au CT (2013) Appl Catal A 450:42–49CrossRefGoogle Scholar
  24. 24.
    Song W, Poyraz AS, Meng Y, Ren Z, Chen SY, Suib SL (2014) Chem Mater 26(15):4629–4639CrossRefGoogle Scholar
  25. 25.
    Ren Q, Mo S, Peng R, Feng Z, Zhang M, Chen L, Ye D (2018) J Mater Chem A 6(2):498–509CrossRefGoogle Scholar
  26. 26.
    Bai B, Li J (2014) ACS Catal 4(8):2753–2762CrossRefGoogle Scholar
  27. 27.
    Yu YB, Takei T, Ohashi H, He H, Zhang XL, Haruta M (2009) J Catal 267:121–128CrossRefGoogle Scholar
  28. 28.
    Widmann D, Leppelt R, Behm RJ (2007) J Catal 251:437–442CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringYancheng Institute of TechnologyYanchengChina
  2. 2.Department of Chemical EngineeringSichuan UniversityChengduChina
  3. 3.State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina

Personalised recommendations