Advertisement

Using DFT Models of Thiophene Adsorption at Transition Metal Interfaces to Interpret Periodic Trends in Thiophene Hydrodesulfurization on Transition Metal Sulfides

  • Walter Malone
  • William E. KadenEmail author
  • Abdelkader KaraEmail author
Article
  • 1 Downloads

Abstract

Charge-transfer and molecular adsorption energy have been modeled by density functional theory with the optB88-vdw functional for a large series of thiophene/transition-metal (TM) combinations. We note an offset in a direct scaling relationship exhibited between these properties sufficient to separate the TMs into two distinct groups. The difference in relationship is shown to correlate strongly with different trends in thiophene hydrodesulfurization when catalyzed by corresponding monometallic transition-metal-sulfides.

Graphic Abstract

Keywords

Desulfurization Thiophene Transition metals Volcano plot Density functional theory 

Notes

Acknowledgments

This work was supported by the U.S. Department of Energy Basic Energy Science under Contract No DE-FG02-11ER16243. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy. For WEK’s contributions, acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support (or partial support) of this research.

Supplementary material

10562_2019_2864_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 56 kb)

References

  1. 1.
    Song CS (2003) Catal Today 86:211CrossRefGoogle Scholar
  2. 2.
    Whitehurst DD, Isoda T, Mochida I (1998) Adv Catal 42:345Google Scholar
  3. 3.
    Wiegand BC, Friend CM (1992) Chem Rev 92:491CrossRefGoogle Scholar
  4. 4.
    Wang HM, Iglesia EJ (2010) Catalysis 273:245CrossRefGoogle Scholar
  5. 5.
    Anderson JR, Boudart M (1996) Catalysis. Science and technology. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Mikovsky RJ, Silvestri AJ, Heineman H (1974) J Catal 34:324CrossRefGoogle Scholar
  7. 7.
    Borgna A, Hensen EJM, van Veen JAR, Niemantsverdriet JW (2004) J Catal 221:541CrossRefGoogle Scholar
  8. 8.
    Girgis MJ, Gates BC (1991) Ind Eng Chem Res 30:2021CrossRefGoogle Scholar
  9. 9.
    Owens PJ, Amberg CH (1961) Adv Chem Serv 33:182CrossRefGoogle Scholar
  10. 10.
    Lee HC, Butt JB (1977) J Catal 49:320CrossRefGoogle Scholar
  11. 11.
    Doukeh R, Bombos M, Trifoi A, Mihai O, Popovici D, Bolocan I, Bombos D (2018) Rev Chim 21:277CrossRefGoogle Scholar
  12. 12.
    Hensen EJM, Vissenberg MJ, deBeer VHJ, vanVeen JAR, van Santen RA (1996) J Catal 163:429CrossRefGoogle Scholar
  13. 13.
    Hensen EJM, Brans HJA, Lardinois G, de Beer VHJ, van Veen JAR, van Santen RA (2000) J Catal 192:98CrossRefGoogle Scholar
  14. 14.
    Ledoux MJ, Michaux O, Agostini G, Panissod P (1986) J Catal 102:275CrossRefGoogle Scholar
  15. 15.
    Pecoraro TA, Chianelli RR (1981) J Catal 67:430CrossRefGoogle Scholar
  16. 16.
    Moses PG, Hinnemann B, Topsoe H, Nørskov JK (2007) J Catal 248:188CrossRefGoogle Scholar
  17. 17.
    Gellman AJ, Farias MH, Somorjai GA (1984) J Catal 88:546CrossRefGoogle Scholar
  18. 18.
    Gellman AJ, Farias MH, Salmeron M, Somorjai GA (1984) Surf Sci 136:217CrossRefGoogle Scholar
  19. 19.
    Bussell ME, Somorjai GA (1987) J Catal 106:93CrossRefGoogle Scholar
  20. 20.
    Bussell ME, Gellman AJ, Somorjai GA (1988) J Catal 110:423CrossRefGoogle Scholar
  21. 21.
    Bussel ME, Gellman AJ, Somorjai GA (1988) Catal Lett 1:195CrossRefGoogle Scholar
  22. 22.
    Kelly DG, Salmeron M, Somorjai GA (1986) Surf Sci 175:465CrossRefGoogle Scholar
  23. 23.
    Gellman AJ, Neiman D, Somorjai GA (1987) J Catal 107:92CrossRefGoogle Scholar
  24. 24.
    Gellman AJ, Bussell ME, Somorjai GA (1987) J Catal 107:103CrossRefGoogle Scholar
  25. 25.
    Rodriguez JA, Kim J-Y, Hanson JC, Sawhill SJ, Bussell ME (2003) J Phys Chem 6276:6285Google Scholar
  26. 26.
    Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) J Phys Chem 4575:4583Google Scholar
  27. 27.
    Zhao H, Oyama T, Freund H-J, Włodarczyk R, Sierka M (2015) Appl Catal B 204:216Google Scholar
  28. 28.
    Malone W, Matos J, Kara A (2018) Surf Sci 669:121CrossRefGoogle Scholar
  29. 29.
    Malone W, Yildirim H, Matos J, Kara A (2017) J Phys Chem C 121:6090CrossRefGoogle Scholar
  30. 30.
    Malone W, Kaden W, Kara A (2019) Surf Sci 30:38Google Scholar
  31. 31.
    Blochl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  32. 32.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  33. 33.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  34. 34.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  35. 35.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  36. 36.
    Klimeš J, Bowler DR, Michaelides A (2011) Phys Rev B 83:195131CrossRefGoogle Scholar
  37. 37.
    Carrasco J, Klimeš J, Michaelides A (2013) J Chem Phys 138:024708CrossRefGoogle Scholar
  38. 38.
    Carrasco J, Santra B, Klimeš J, Michaelides A (2011) Phys Rev Lett 106:026101CrossRefGoogle Scholar
  39. 39.
    Klimeš J, Michaelides A (2012) J Chem Phys 137:120901CrossRefGoogle Scholar
  40. 40.
    Liu W, Carrasco J, Santra B, Michaelides A, Scheffler M, Tkatchenko A (2012) Phys Rev B 86:245405CrossRefGoogle Scholar
  41. 41.
    Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M (2010) MRS Bull 35:435CrossRefGoogle Scholar
  42. 42.
    Mittendorfer F, Garhofer A, Redinger J, Klimeš J, Harl J, Kresse G (2011) Phys Rev B 84:201401CrossRefGoogle Scholar
  43. 43.
    Heckel W, Wurger T, Muller S, Feldbauer G (2017) J Phys Chem C 121:17207CrossRefGoogle Scholar
  44. 44.
    Graziano G, Klimeš J, Fernandez-Alonso F, Michaelides A (2012) J Phys Condes Matter 24:424216CrossRefGoogle Scholar
  45. 45.
    Klimeš J, Bowler DR, Michaelides A (2010) J Phys Condes Matter 22:022201CrossRefGoogle Scholar
  46. 46.
    Yildirim H, Greber T, Kara A (2013) J Phys Chem C 117:20572CrossRefGoogle Scholar
  47. 47.
    Matos J, Yildirim H, Kara A (2015) J Phys Chem C 119:1886CrossRefGoogle Scholar
  48. 48.
    Yildirim H, Kara A (2013) J Phys Chem C 117:2893CrossRefGoogle Scholar
  49. 49.
    Matos J, Rojas T, Yildirim H, Kara A (2014) J Chem Phys 140:144703CrossRefGoogle Scholar
  50. 50.
    Yildirim H, Matos J, Kara A (2015) J Phys Chem C 119:25408CrossRefGoogle Scholar
  51. 51.
    Hestenes MR, Stiefel EJ (1952) Res Natl Bur Stand 49:409CrossRefGoogle Scholar
  52. 52.
    Teter MP, Payne MC, Allan DC (1989) Phys Rev B 40:12255CrossRefGoogle Scholar
  53. 53.
    Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21:084204CrossRefGoogle Scholar
  54. 54.
    Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comp Chem 28:899CrossRefGoogle Scholar
  55. 55.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354CrossRefGoogle Scholar
  56. 56.
    Yu M, Trinkle DR (2011) J Chem Phys 134:064111CrossRefGoogle Scholar
  57. 57.
    Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) J Am Chem Soc 123:8404CrossRefGoogle Scholar
  58. 58.
    Cheng J, Hu P (2008) J Am Chem Soc 130:10868CrossRefGoogle Scholar
  59. 59.
    Singh AR, Montoya JH, Rohr BA, Tsai C, Vojyodic A, Nørskov JK (2018) ACS Catal 8:4017CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of Central FloridaOrlandoUSA
  2. 2.Renewable Energy and Chemical Transformations ClusterUniversity of Central FloridaOrlandoUSA

Personalised recommendations