Zn–Ni–P Nanoparticles Decorated g-C3N4 Nanosheets Applicated as Photoanode in Photovoltaic Fuel Cells

  • Lijun Zhang
  • Zhiliang JinEmail author
  • Yanbing Li
  • Xuqiang HaoEmail author
  • Fenglan Han


A novel ternary hybrid catalyst with high-efficient photoelectrocatalytic property, namely composite photocatalyst of Zn–Ni–P@C3N4, was successfully designed and prepared for ethanol oxidation in alkaline media. A new electrode material for photoactivated fuel cells (PFC) was proposed. The Zn–Ni–P@C3N4 photoanode was used to generate electricity by catalytic oxidation of ethanol which was used as a direct fuel. The catalyst with ternary hybrid structure exhibiteds superior catalytic activity for ethanol oxidation. Compared to the nanostructures of Zn–P@C3N4 and Ni–P@C3N4 respectively, it possessed a more negative onset potential, higher oxidation peak current, a greater peak current density and minimum mass transfer resistance. These unique properties above were proved by a series of characterizations which include Cyclic Voltammetry (CV), Linear Scan Voltammetry (LSV), Current–time curves and Electrochemical Impedance Spectroscopy (EIS) etc. The excellent electrocatalytic and photoelectrocatalytic performance could be ascribed to the maximum interfacial contact of Ni2P, ZnP2 and g-C3N4, which decreases the agglomeration of nanostructures and effectively suppresses the recombination of photogenerated electron-hole. This work provides a strategy for the synthesis of superior semiconductor which can be used as an efficient visible-light-driven catalyst for photochemical synthesis and energy conversion.

Graphic Abstract


Ethanol oxidation Zn–Ni–P@C3N4 photocatalyst Photoanode Hydrogen production 



This work was financially supported by the Chinese National Natural Science Foundation (41663012 and 21862002), the Graduate Innovation Project of the North Minzu University (YCX19113), the new technology and system for clean energy catalytic production, Major scientific project of North Minzu University (ZDZX201803) and the Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project of North Minzu University.


  1. 1.
    Barakat NAM, Motlak M, Elzatahry AA, Khalil KA, Abdelghani EAM (2014) Int J Hydrog Energy 39:305CrossRefGoogle Scholar
  2. 2.
    Jablonski A, Lewera A (2015) Chin J Catal 36:496CrossRefGoogle Scholar
  3. 3.
    Xu ZH, Rao LX, Song HY, Yan ZX, Zhang LJ, Yang SB (2017) Chin J Catal 38:305CrossRefGoogle Scholar
  4. 4.
    Akhairi MAF, Kamarudin SK (2015) Int J Hydrog Energy 12:145Google Scholar
  5. 5.
    Hong W, Wang J, Wang E, Appl ACS (2014) Mater Interfaces 6:9481CrossRefGoogle Scholar
  6. 6.
    Yue R, Wang H, Bin D, Xu J, Du Y, Lu W, Guo J (2015) J Mater Chem A 3:1077CrossRefGoogle Scholar
  7. 7.
    Yu C, Yan ZX, Zhu LH, Wen J, Wang HQ, Xu ZH (2016) Electrocatalysis 7:193CrossRefGoogle Scholar
  8. 8.
    Xu ZH, Rao LX, Song HY, Yan ZX, Zhang LJ, Yang SB (2017) Chin J Catal 38:305CrossRefGoogle Scholar
  9. 9.
    Lv XY, Xu ZH, Yan ZX, Li XH (2011) Electrocatal 2:82CrossRefGoogle Scholar
  10. 10.
    Xu ZX, Yu JG, Liu G (2011) Electrochem Commun 13:1260CrossRefGoogle Scholar
  11. 11.
    Xia M, Chen R, Zhu X, Liao Q, An L, Wang ZB, He XF, Jiao L (2016) Sci Bull 61:1699CrossRefGoogle Scholar
  12. 12.
    Liao Q, Li L, Chen R, Zhu X, Wang H, Ye DD, Cheng X, Zhang MX, Zhou YC (2015) Int J Hydrog Energy 40:16547CrossRefGoogle Scholar
  13. 13.
    Reddy YS, Magdalane CM, Kaviyarasu K, Mola GT, Kennedy J, Maaza M (2018) J Phys Chem Sol 123:43CrossRefGoogle Scholar
  14. 14.
    Li YX, Wang H, Peng SQ (2014) J Phys Chem C 118:19842CrossRefGoogle Scholar
  15. 15.
    Magdalane CM, Kaviyarasu K, Raja A, Arularasu MV, Mola GT, Isaev AB, Dhabi NA, Arasu MV, Jeyaraj B, Kennedy J, Maaza M (2018) J Photoch Photobio B 185:275CrossRefGoogle Scholar
  16. 16.
    Li YX, Li H, Li YF, Peng SQ, Hu YH (2018) Chem Eng J 344:506CrossRefGoogle Scholar
  17. 17.
    Peng SQ, Yang Y, Tan JN, Gan C, Li YX (2018) Appl Surf Sci 447:822CrossRefGoogle Scholar
  18. 18.
    Carucci A, Milia S, Cappai G, Muntoni A (2010) J Hazard Mater 177:1119CrossRefGoogle Scholar
  19. 19.
    Yu TT, Liu LF, Li L, Yang FL (2016) Electrochim Acta 210:122CrossRefGoogle Scholar
  20. 20.
    Nahyoon NA, Liu LF, Rabe K, Thebo KH, Yuan LX, Sun JQ, Yang FL (2018) Electrochim Acta 271:41CrossRefGoogle Scholar
  21. 21.
    Ying DW, Cao RQ, Li CJ, Tang TT, Li K, Wang HW, Wang YL, Jia JP (2016) Electrochim Acta 192:319CrossRefGoogle Scholar
  22. 22.
    Li YX, Hou YL, Fu QY, Peng SQ, Hu YH (2017) Appl Catal B 206:726CrossRefGoogle Scholar
  23. 23.
    Ma BJ, Xu HJ, Lin KY, Li J, Zhan HJ, Liu WY, Li C (2016) ChemSusChem 9:820CrossRefGoogle Scholar
  24. 24.
    Hao XQ, Jin ZL, Yang H, Lu GX, Bi YP (2017) Appl Catal B 210:45CrossRefGoogle Scholar
  25. 25.
    Li YX, Han P, Hou YL, Peng SQ, Kuang XJ (2019) Appl Catal B 244:604CrossRefGoogle Scholar
  26. 26.
    Liu DD, Jin ZL, Li HX, Lu GX (2017) Appl Surf Sci 423:255CrossRefGoogle Scholar
  27. 27.
    Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) J Nat Mater 8:76CrossRefGoogle Scholar
  28. 28.
    Hao XQ, Wang Y, Zhou J, Cui ZW, Wang Y, Zou ZG (2018) Appl Catal B 221:302CrossRefGoogle Scholar
  29. 29.
    Chatter D, Patnam VR, Sikdar A (2008) J Hazard Mater 156:435CrossRefGoogle Scholar
  30. 30.
    Jaeger CD, Bard AJ (1979) J Phys Chem 83:3146CrossRefGoogle Scholar
  31. 31.
    Mao Y, Schoneich C, Asmus KD (1991) J Phys Chem 95:80CrossRefGoogle Scholar
  32. 32.
    Carraway ER, Hoffman AJ, Hoffmann MR (1994) Environ Sci Technol 28:786CrossRefGoogle Scholar
  33. 33.
    Fu H, Pan C, Yao W, Zhu Y (2005) J Phys Chem B 109:22432CrossRefGoogle Scholar
  34. 34.
    Xiang QJ, Yu JG, Jaroniec M (2011) J Phys Chem C 115:7355CrossRefGoogle Scholar
  35. 35.
    Yan SC, Li ZS, Zou ZG (2009) Langmuir 25:10397CrossRefGoogle Scholar
  36. 36.
    Fan K, Jin ZL, Yang H, Liu DD, Hu HY, Bi YP (2017) Sci Rep 7:7710CrossRefGoogle Scholar
  37. 37.
    Hu JY, Yu CK, Zhai CY, Hu SJ, Wang Y, Fu NQ, Zeng LX, Zhu MS (2018) Catal Today 315:36CrossRefGoogle Scholar
  38. 38.
    Chen QH, Liu HL, Xin YJ, Cheng XW (2014) Chem Eng J 241:145CrossRefGoogle Scholar
  39. 39.
    Xu JY, Li YX, Peng SQ, Lu GX, Li SB (2013) Phys Chem Chem Phys 15:7657CrossRefGoogle Scholar
  40. 40.
    Wen CL, Zhang HA, Bo QB, Huang TZ, Lu ZL, Lv JM, Wang Y (2015) Chem Eng J 270:405CrossRefGoogle Scholar
  41. 41.
    Chen F, Yang Q, Wang YL, Zhao JW, Wang DB, Li XM, Guo Z, Wang H, Deng YC, Niu CG, Zeng GM (2017) Appl Catal B 205:133CrossRefGoogle Scholar
  42. 42.
    Ma BJ, Li DK, Wang XY, Lin KY (2018) Chemsuschem 11:3871CrossRefGoogle Scholar
  43. 43.
    Liu YB, Li JH, Zhou BX, Lv SB, Li XJ, Chen HC, Chen QP, Cai WM (2012) Appl Catal B 111:485CrossRefGoogle Scholar
  44. 44.
    Hua WM, Ding ZC (1987) Acta Phys Chim Sin 3:395Google Scholar
  45. 45.
    Stern LA, Feng LG, Song F, Hu XL (2015) Energy Environ Sci 8:2347CrossRefGoogle Scholar
  46. 46.
    Xing WN, Tu WN, Han ZG, Hu YD, Meng QQ, Chen G (2018) ACS Energy Lett 3:514CrossRefGoogle Scholar
  47. 47.
    Ye RQ, Fang HB, Zheng YZ, Li N, Wang Y, Tao X (2016) ACS Appl Mater Interfaces 8:13879CrossRefGoogle Scholar
  48. 48.
    Elbanna O, Fujitsuka M, Ma J (2017) ACS Appl Mater Interfaces 9:34844CrossRefGoogle Scholar
  49. 49.
    Hao XQ, Wang YC, Zhou J, Cui ZW, Wang Y, Zou ZG (2018) Appl Catal B 221:302CrossRefGoogle Scholar
  50. 50.
    Liu H, Xu ZZ, Zhang Z, Ao D (2016) Appl Catal A 518:150CrossRefGoogle Scholar
  51. 51.
    Zhang D, Guo YL, Zhao ZG (2018) Appl Catal B 226:1CrossRefGoogle Scholar
  52. 52.
    Li C, Du Y, Wang D, Chen G, Xu R (2017) Adv Funct Mater 27:1604328CrossRefGoogle Scholar
  53. 53.
    Shen RG, Xie J, Lu XY, Li X (2018) ACS Sustain Chem Eng 6:26Google Scholar
  54. 54.
    Zhao H, Sun S, Jiang PP, Xu ZC (2017) Chem Eng J 315:296CrossRefGoogle Scholar
  55. 55.
    Elbanna O, Fujitsuka M, Majima T (2017) Acs Appl Mater Interfaces 9:34844CrossRefGoogle Scholar
  56. 56.
    Wang H, Chen Z, Cheng Q, Yuan LX (2009) J Alloy Compd 478:872CrossRefGoogle Scholar
  57. 57.
    Singh RN, Singh A, Mishra D (2008) Int J Hydrog Energy 33:6878CrossRefGoogle Scholar
  58. 58.
    Arabzadeh A, Salimi A, Ashrafi M, Soltanian S, Servati P (2016) Catal Sci Technol 6:3485CrossRefGoogle Scholar
  59. 59.
    Hao XQ, Zhou J, Cui ZW, Wang YC, Wang Y, Zou ZG (2018) Appl Catal B 229:41CrossRefGoogle Scholar
  60. 60.
    Feng CC, Wang ZH, Ma Y, Zhang YJ, Wang L, Bi YP (2017) Appl Catal B 205:19CrossRefGoogle Scholar
  61. 61.
    Zhang LJ, Hao XQ, Jian QY, Jin ZL (2019) J Solid State Chem 274:286CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringNorth Minzu UniversityYinchuanPeople’s Republic of China
  2. 2.Ningxia Key Laboratory of Solar Chemical Conversion TechnologyNorth Minzu UniversityYinchuanPeople’s Republic of China
  3. 3.Key Laboratory for Chemical Engineering and TechnologyState Ethnic Affairs Commission, North Minzu UniversityYinchuanPeople’s Republic of China
  4. 4.Collaborative Innovation Center for High Value Utilization of Industrial Scientific and Technological Cooperation Base of Industrial Waster Recycling and Advanced MaterialsNorth Minzu UniversityYinchuanPeople’s Republic of China

Personalised recommendations