Advertisement

Perovskite-Derived Pt–Ni/Zn(Ni)TiO3/SiO2 Catalyst for Propane Dehydrogenation to Propene

  • Yatian Liu
  • Yanyong Li
  • Meng Ge
  • Xingye Chen
  • Mengquan Guo
  • Lihong ZhangEmail author
Article

Abstract

Platinum-based catalysts are promising materials for the propane dehydrogenation (PDH). The Pt sintering and carbon deposition are still the urgent problems to be solved in this system. This paper investigates an investigation of effect of perovskite-type oxide (PTO) lattice confinement on the catalytic performance of Zn(Ni)TiO3/SiO2 supported Pt–Ni bimetallic catalysts for PDH. The supported PTO precursors and derived catalysts were analyzed by XRD, H2-TPR, TEM, XPS and TG techniques. The results show that the Pt–Ni alloy nanoparticles (NPs) are formed and highly dispersed on Zn(Ni)TiO3/SiO2. The optimized Pt loading amount is 0.4 wt%, which enhances the propane conversion to 38.6% and propene selectivity of 96.6%. The superior catalytic performance and anti-sintering and carbon deposition ability of Pt–Ni/Zn(Ni)TiO3/SiO2 catalyst are ascribed to the addition of appropriate Pt amount, which is beneficial to being confined in PTO lattice and building the abundant Pt–Ni alloy sites and moderate Pt–Ni interaction. The unconfined Pt coming from excessive Pt addition and impregnated Pt can result in Pt sintering and carbon formation.

Graphic Abstract

Keywords

Perovskite lattice confinement Propane dehydrogenation Pt–Ni alloy Carbon deposition Pt sintering 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21776214) and State Key Laboratory of Chemical Resource Engineering.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Watanabe R, Sekine Y, Kojima J, Matsukata M, Kikuchi E (2011) Dehydrogenation of ethylbenzene over highly active and stable perovskite oxide catalyst-effect of lattice oxygen on/in perovskite oxide and role of A/B site in perovskite oxide. Appl Catal A 398(1):66–72CrossRefGoogle Scholar
  2. 2.
    Jin SH, Guan WX, Tsang CW, Yan DYS, Chan CY, Liang CH (2017) Enhanced hydroconversion of lignin-derived oxygen-containing compounds over bulk nickel catalysts though Nb2O5 modification. Catal Lett 147(8):2215–2224CrossRefGoogle Scholar
  3. 3.
    Mcgregor J, Huang ZY, Parrott EPJ, Zeitler JA, Nguyen KL, Jeremy MR, Rawson JM, Carley A, Hansen TW, Tessonnier JP, Su DS, Teschner D, Vass EM, Knop-Gericke A, Schlogl R, Gladden LF (2010) Active coke: carbonaceous materials as catalysts for alkane dehydrogenation. J Catal 269:329–339CrossRefGoogle Scholar
  4. 4.
    Han ZP, Li SR, Jiang F, Tuo W, Ma XB, Gong JL (2014) Propane dehydrogenation over Pt–Cu bimetallic catalysts: the nature of coke deposition and the role of copper. Nanoscale 6:10000–10008CrossRefGoogle Scholar
  5. 5.
    Lee H, Kim WI, Jung KD, Koh HL (2017) Effect of Cu promoter and alumina phases on Pt/Al2O3 for propane dehydrogenation. Korean J Chem Eng 34(5):1337–1345CrossRefGoogle Scholar
  6. 6.
    Ricca A, Palma V, Iaquaniello G, Palo E, Salladini A (2017) Highly selective propylene production in a membrane assisted catalytic propane dehydrogenation. Chem Eng J 330:1119–1127CrossRefGoogle Scholar
  7. 7.
    Li Q, Sui ZJ, Zhou XG, Zhu Y, Zhou JH, Chen D (2011) Coke formation on Pt–Sn/Al2O3 catalyst in Propane dehydrogenation: coke characterization and kinetic study. Top Catal 54(13–15):888–896CrossRefGoogle Scholar
  8. 8.
    Jiang F, Zeng L, Li SR, Liu G, Wang SP, Gong JL (2015) Propane dehydrogenation over Pt/TiO2–Al2O3 Catalysts. ACS Catal 5(1):438–447CrossRefGoogle Scholar
  9. 9.
    Si J, Liu GL, Liu JG, Zhao L, Li SS, Guan Y, Liu Y (2016) Ni nanoparticles highly dispersed on ZrO2 and modified with La2O3 for CO methanation. RSC Adv 15(6):12699–12707CrossRefGoogle Scholar
  10. 10.
    Dongil AB, Bachiller-Baeza B, Rodrıguez-Ramos I, Fierrob JLG, Escalona N (2016) The effect of Cu loading on Ni/carbon nanotubes catalysts for hydrodeoxygenation of guaiacol. RSC Adv 6:26658–26667CrossRefGoogle Scholar
  11. 11.
    Xia K, Lang WZ, Li PP, Long LL, Yan X, Guo YJ (2016) The influences of Mg/Al molar ratio on the properties of PtIn/Mg(Al)O−x catalysts for propane dehydrogenation reaction. Chem Eng J 284:1067–1079CrossRefGoogle Scholar
  12. 12.
    Polo-Garzon F, Yang SZ, Fung V, Foo GS, Bickel EE, Chisholm MF, Jiang DE, Wu ZL (2017) Controlling reaction selectivity through the surface termination of perovskite catalysts. Angew Chem Int Edit 56(33):9820–9824CrossRefGoogle Scholar
  13. 13.
    Sumathi R, Johnson K, Viswanathan B, Varadarajan TK (1998) Selective oxidation and dehydrogenation of benzyl alcohol on ABB’O3 (A = Ba, B = Pb, Ce, Ti and B’ = Bi, Cu, Sb) -type perovskite oxides-temperature programmed reduction studies. Appl Catal A 172(1):15–22CrossRefGoogle Scholar
  14. 14.
    Deng J, Cai M, Sun W, Liao X, Chu W, Zhao XS (2013) Oxidative methane reforming with an intelligent catalyst: sintering-tolerant supported nickel nanoparticles. ChemSusChem 6(11):2061–2065CrossRefGoogle Scholar
  15. 15.
    Fang YZ, Liu Y, Zhang LH (2011) LaFeO3−supported nano Co–Cu catalysts for higher alcohol synthesis from syngas. Appl Catal A 397:183–191CrossRefGoogle Scholar
  16. 16.
    Yu CL, Xu HY, Ge QJ, Li WZ (2007) Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation. J Mol Catal A 266(1–2):80–87CrossRefGoogle Scholar
  17. 17.
    Zhu QQ, Wang GW, Liu JW, Su LS, Li CY (2017) Effect of Sn on isobutane dehydrogenation performance of Ni/SiO2 catalyst: adsorption modes and adsorption energies of isobutane and isobutene. ACS Appl Mater Interfaces 9(36):30711–30721CrossRefGoogle Scholar
  18. 18.
    Yang X, Liu GL, Li YX, Zhang L, Wang XT, Liu Y (2019) Novel Pt–Ni bimetallic catalysts Pt(Ni)–LaFeO3/SiO2 via lattice atomic-confined reduction for highly efficient isobutane dehydrogenation. Trans Tianjin Univ 25(3):245–257CrossRefGoogle Scholar
  19. 19.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767CrossRefGoogle Scholar
  20. 20.
    Liu GL, Geng YX, Pan DM, Zhang Y, Niu T, Liu Y (2014) Bi-metal Cu–Co from LaCo1−xCuxO3 perovskite supported on zirconia for the synthesis of higher alcohols. Fuel Process Technol 128:289–296CrossRefGoogle Scholar
  21. 21.
    Dai H, Qiu YP, Dai HB, Wang P (2018) Ni–Pt/CeO2 loaded on granular activated carbon: an efficient monolithic catalyst for controlled hydrogen generation from hydrous hydrazine. ACS Sustain Chem Eng 26:1–23Google Scholar
  22. 22.
    Zhu J, Yang ML, Yu YD, Zhu YA, Sui ZJ, Zhou XG, Anders H, Chen D (2015) Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. ACS Catal 5(11):6310–6319CrossRefGoogle Scholar
  23. 23.
    Han T, Zhao L, Liu GL, Ning HY, Yue YZ, Liu Y (2017) Rh-Fe alloy derived from YRh0.5Fe0.5O3/ZrO2 for higher alcohols synthesis from syngas. Catal Today 298:69–76CrossRefGoogle Scholar
  24. 24.
    Arenas-Alatorre J, Gomez-Cortes A, Avalos-Borja M, Diaz G (2005) Surface properties of Ni–Pt/SiO2 catalysts for N2O decomposition and reduction by H2. J Phys Chem B 109(6):2371–2376CrossRefGoogle Scholar
  25. 25.
    Jentys A, Mchugh BJ, Haller GL, Lercher JA (1992) Temperature-programmed reduction of silica-supported Pt/Ni catalysts studied by XANES. J Phys Chem 96(3):1324–1328CrossRefGoogle Scholar
  26. 26.
    Doh H, Kim HY, Kim GS, Cha J, Park HS, Ham HC, Yoon SP, Han J, Nam SW, Song KH, Yoon CW (2017) Influence of cation substitutions based on ABO3 perovskite materials, Sr1−xYxTi1−yRuyO3−δ, on ammonia dehydrogenation. ACS Sustain Chem Eng 5:9370–9379CrossRefGoogle Scholar
  27. 27.
    Shen LL, Xia K, Lang WZ, Chu LF, Yan X, Guo YJ (2017) The effects of calcination temperature of support on PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction. Chem Eng J 324:336–346CrossRefGoogle Scholar
  28. 28.
    Nassr AAA, Sinev I, Pohl MM, Grunert W, Bron M (2014) Rapid microwave-assisted polyol reduction for the preparation of highly active PtNi/CNT electrocatalysts for methanol oxidation. ACS Catal 4(8):2449–2462CrossRefGoogle Scholar
  29. 29.
    Qiao L, Bi XF (2009) Nanostructure and performance of Pt–LaNiO3 composite film for ferroelectric film devices. Acta Mater 57(14):4109–4114CrossRefGoogle Scholar
  30. 30.
    Pastor-Perez L, Sepulveda-Escribano A (2017) Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content. Fuel 194:222–228CrossRefGoogle Scholar
  31. 31.
    Sun YN, Wu YM, Tao L, Shan HH, Wang GW, Li CY (2015) Effect of pre-reduction on the performance of Fe2O3/Al2O3 catalysts in dehydrogenation of propane. J Mol Catal A 397:120–126CrossRefGoogle Scholar
  32. 32.
    Chen M, Wu JL, Liu YM, Cao Y, Guo L, He HY, Fan KN (2011) Study in support effect of In2O3/MOx (M = Al, Si, Zr) catalysts for dehydrogenation of propane in the presence of CO2. Appl Catal A 407(1):20–28CrossRefGoogle Scholar
  33. 33.
    Xia K, Lang WZ, Li PP, Yan X, Guo YJ (2015) Analysis of the catalytic activity induction and deactivation of PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction. RSC Adv 5(79):64689–64695CrossRefGoogle Scholar
  34. 34.
    Cai W, Mu R, Zha S, Sun G, Chen S, Zhao Z, Li H, Tian H, Tang Y, Tao F, Zeng L, Gong J (2018) Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci Adv 4(8):5418–5426CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Zhou Y, Huang L, Zhou S, Sheng X, Wang Q, Zhang C (2015) Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation. Chem Eng J 270:352–361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Catalysis Science and Technology and Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations