Co5.47N/rGO@NF as a High-Performance Bifunctional Catalyst for Urea-Assisted Hydrogen Evolution

  • Liqin Yang
  • Yongli Liu
  • Lei Wang
  • Zhiju ZhaoEmail author
  • Cuijuan Xing
  • Shuhe Shi
  • Meiling Yuan
  • Zhaoming Ge
  • Zhenyu CaiEmail author


The hydrogen produced by water splitting is limited due to the high theoretical potential of the anode. So, the lower theoretical potential of the urea oxidation reaction (UOR) was selected. In this work, a highly efficient bifunctional catalyst, cobalt nitride doped with reduced graphene oxide nanosheets supported on Ni foam (Co5.47N/rGO@NF), was synthesized by hydrothermal and calcination methods for both UOR and hydrogen evolution reaction (HER). The morphology and composition of Co5.47N/rGO@NF was studied through XRD, XPS, SEM, TEM, HRTEM and elemental mapping. A parallel two-electrode electrolyzer (Co5.47N/rGO@NF||Co5.47N/rGO@NF) was constructed for electrochemical testing. To drive 100 mA/cm2, the voltage of Co5.47N/rGO@NF||Co5.47N/rGO@NF only 1.684 V is required, which is much lower than that of Pt/C||IrO2 (1.875 V) and the current density can be maintained for at least 30 h. This demonstrates that its high activity and stability have commercial feasibility.

Graphic Abstract


UOR Bifunctional HER Graphene Ni foam 



We acknowledge financial support from the Project supported by Key projects of science and technology research in Hebei higher education institutions (Grant No. ZD2018311), and Funding of Key Laboratory of Bio-inspired Materials and Interfacial Science, TICP, CAS, and Project supported by Xingtai science and technology program (Grant Nos. 2018ZC031, 2018ZC227), and Natural Science Foundation of Hebei Province (Grant No. E2018108011).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10562_2019_2854_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2441 kb)


  1. 1.
    Ya L, Guo L, Dong J, Chang L, Wang L, Jing Z, Xue L, Zheng J (2019) Catal Lett 149:19–24CrossRefGoogle Scholar
  2. 2.
    Mota FM, Choi CH, Boppella R (2019) J Mater Chem A 7:639–646CrossRefGoogle Scholar
  3. 3.
    Yan G, Zhang X, Xiao L (2019) J Mater Sci 63:19–25Google Scholar
  4. 4.
    Xiao W, Liang W, Juan L, Guang W, Jian W, Xin L, Xu Y (2019) Catal Lett 149:61–68CrossRefGoogle Scholar
  5. 5.
    Guo L, Ya L, Xiao Yu, Dong J, Chang L, Jing Z, Xue L (2019) Catal Lett 149:870–875CrossRefGoogle Scholar
  6. 6.
    Yan X, Tian L, He M, Chen X (2015) Nano Lett 15:6015–6022CrossRefGoogle Scholar
  7. 7.
    Xu K, Chen P, Li X, Tong Y, Ding H, Wu X, Chu W, Peng Z, Wu C, Xie Y (2015) J Am Chem Soc 137:4119–4125CrossRefGoogle Scholar
  8. 8.
    Pulipaka S, Koushik AKS, Deepa M (2019) RSC Adv 9:1335–1340CrossRefGoogle Scholar
  9. 9.
    Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X (2016) Adv Mater 28:215–230CrossRefGoogle Scholar
  10. 10.
    Xu W, Zhang H, Li G, Wu Z (2014) Sci Rep 4:58–63Google Scholar
  11. 11.
    Liang Y, Liu Q, Asiri AM, Sun X (2015) Electrochem Acta 153:456–460CrossRefGoogle Scholar
  12. 12.
    Ma M, Qu F, Ji X, Liu D, Hao S, Du G, Asiri AM, Yao Y, Chen L, Sun X (2017) Small 13:1700394CrossRefGoogle Scholar
  13. 13.
    Gwak J, Choun M, Lee J (2016) Chemsuschem 9:403–408CrossRefGoogle Scholar
  14. 14.
    Chen S, Duan J, Vasileff A, Vasileff A, Qiao SZ (2016) Angew Chem Int Ed Engl 55:3804–3808CrossRefGoogle Scholar
  15. 15.
    Xu W, Zhang H, Li G, Wu Z (2016) J Electroanal Chem 764:38–44CrossRefGoogle Scholar
  16. 16.
    Barakat NAM, Alajami M, Alhaj Y, Obaid M, Al-Meer S (2017) Catal Commun 97:1304–1312CrossRefGoogle Scholar
  17. 17.
    Ding R, Qi L, Jia M, Wang H (2014) Nanoscale 6:1369–1378CrossRefGoogle Scholar
  18. 18.
    Tyagi M, Tomar M, Gupta V (2013) Biosens Bioelectron 41:110–115CrossRefGoogle Scholar
  19. 19.
    Ji RY, Chan DS, Jow JJ, Wu MS (2013) Electrochem Commun 29:21–24CrossRefGoogle Scholar
  20. 20.
    Wu MS, Ji RY, Zheng YR (2014) Electrochim Acta 114:194–199CrossRefGoogle Scholar
  21. 21.
    Yue Z, Yao S, Li Y, Zhu W, Zhang W (2018) Electrochim Acta 268:211–217CrossRefGoogle Scholar
  22. 22.
    Wang L, Li M, Huang Z, Li Y, Qi S, Yi C, Yang B (2014) J Power Sources 264:282–289CrossRefGoogle Scholar
  23. 23.
    Yan X, Tian L, Chen X (2015) J Power Sources 300:336–342CrossRefGoogle Scholar
  24. 24.
    Liu Q, Xie L, Qu F, Liu Z, Du G (2017) Inorg Chem Front 2017:1120–1124CrossRefGoogle Scholar
  25. 25.
    Chen T, Liu D, Lu W, Wang K, Du G, Asiri AM, Sun X (2016) Anal Chem 88:7885–7889CrossRefGoogle Scholar
  26. 26.
    Fan Y, Ma Z, Wang L, Dong Y, Jiang T (2018) Electrochim Acta 269:62–69CrossRefGoogle Scholar
  27. 27.
    Deng C, Yang L, Yang C, Shen P, Zhao L (2018) Appl Surf Sci 428:148–153CrossRefGoogle Scholar
  28. 28.
    Chen S, Duan J, Vasileff A, Qiao SZ (2016) Angew Chem Int Ed 55:3804–3808CrossRefGoogle Scholar
  29. 29.
    Miller AT, Hassler BL, Botte GG (2012) J Appl Electrochem 42:925–934CrossRefGoogle Scholar
  30. 30.
    Chen S, Duan J, Jaroniec M, Qiao S (2013) Angew Chem Int Ed 52:13567–13570CrossRefGoogle Scholar
  31. 31.
    Chen S, Duan J, Ran J, Jaroniec M, Qiao S (2013) Energy Environ Sci 6:3693–3699CrossRefGoogle Scholar
  32. 32.
    Chen T, Liu D, Lu W, Wang K, Du G, Asiri AM, Sun X (2016) Anal Chem 88:7885–7889CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Liqin Yang
    • 1
  • Yongli Liu
    • 2
  • Lei Wang
    • 3
  • Zhiju Zhao
    • 1
    • 4
    Email author
  • Cuijuan Xing
    • 1
  • Shuhe Shi
    • 1
  • Meiling Yuan
    • 1
  • Zhaoming Ge
    • 1
  • Zhenyu Cai
    • 2
    Email author
  1. 1.College of Chemistry and Chemical EngineeringXingtai UniversityXingtaiChina
  2. 2.Xingtai UniversityXingtaiChina
  3. 3.Handan CustomsHandanChina
  4. 4.Key Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina

Personalised recommendations