Advertisement

Hydrogenation of Phenol to Cyclohexanone over Bifunctional Pd/C-Heteropoly Acid Catalyst in the Liquid Phase

  • Shiwei LiuEmail author
  • Jing Han
  • Qiong Wu
  • Bing Bian
  • Lu Li
  • Shitao Yu
  • Jie Song
  • Cong Zhang
  • Arthur J. Ragauskas
Article
  • 30 Downloads

Abstract

Cyclohexanone is an important intermediate in the manufacture of polyamides in chemical industry, but direct selective hydrogenation of phenol to cyclohexanone under mild conditions is a challenge. Hydrogenation of phenol to cyclohexanone has been investigated in the presence of the composite catalytic system of Pd/C-heteropoly acid. 100% conversion of phenol and 93.6% selectivity of cyclohexanone were achieved within 3 h under 80 °C and 1.0 MPa hydrogen pressure. It has been found that a synergetic effect of Pd/C and heteropoly acid enhanced the catalytic performance of the composite catalytic system which suppressed the hydrogenation of cyclohexanone to cyclohexanol.

Graphic Abstract

Keywords

Cyclohexanone Catalysis Hydrogenation Pd/C-heteropoly acid Phenol 

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (31370570), the Taishan Scholars Projects of Shandong (ts201511033), the Key R&D Project of Shandong (2017GGX40106), and the People’s Livelihood Science and Technology Project of Qingdao (173383NSH). The authors are also grateful for the experimental conditions which the Polyphase Fluid Reaction and Separation Engineering Key Laboratory of the Shandong gives.

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    Hu S, Yang G, Hong J, Liu Y, Chen R (2018) Appl Surf Sci 435:649–655CrossRefGoogle Scholar
  2. 2.
    He J, Lu XH, Shen Y, Jing R, Nie RF, Zhou D, Xia QH (2017) Mol Catal 440:87–95CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Zhou J, Si J (2017) RSC Adv 7:54779–54788CrossRefGoogle Scholar
  4. 4.
    Guo Q, Mo SG, Liu PX, Zheng WD, Qin RX, Xu CF, Wu YQ, Wu BH, Zheng NF (2017) Sci China 60:1444–1449CrossRefGoogle Scholar
  5. 5.
    Li CH, Chen HL, Yang MS (2018) US Patent 20180072646Google Scholar
  6. 6.
    Qu Z, Hu S, Jiang H, Liu Y, Huang J, Xing W, Chen RZ (2017) Ind Eng Chem Res 56:11755–11762CrossRefGoogle Scholar
  7. 7.
    Jiang H, Qu Z, Li Y, Huang J, Chen R, Xing W (2016) Chem Eng J 284:724–732CrossRefGoogle Scholar
  8. 8.
    Zhou H, Han B, Liu T, Zhong X, Zhuang GL, Wang JG (2017) Green Chem 19:3585–3594CrossRefGoogle Scholar
  9. 9.
    Yan RH, Cai WQ, Zhuo JL, Wang X, Li MZ (2018) Chem Ind Eng Prog 37:1014–1020Google Scholar
  10. 10.
    Cheng L, Dai Q, Li H, Wang X (2014) Catal Commun 57:23–28CrossRefGoogle Scholar
  11. 11.
    Martínez-Ortiz MJ, de la Rosa-Guzmán MA, Vargas-García JR, Flores-Moreno JL, Castillo N, Guzmán-Vargas A (2017) Can J Chem Eng 96:297–306CrossRefGoogle Scholar
  12. 12.
    Lin CJ, Huang SH, Lai NC, Yang CM (2000) Artif Organs 24:680–682CrossRefGoogle Scholar
  13. 13.
    Zhong J, Chen J, Chen L (2014) Selective hydrogenation of phenol and related derivatives. Catal Sci Technol 4:3555–3569CrossRefGoogle Scholar
  14. 14.
    Hu S, Zhang X, Qu Z, Jiang H, Liu Y, Huang J (2017) J Ind Eng Chem 53:333–340CrossRefGoogle Scholar
  15. 15.
    Alazman A, Belic D, Kozhevnikova EF, Kozhevnikov IV (2018) J Catal 357:80–89CrossRefGoogle Scholar
  16. 16.
    García-López EI, Marcì G, Pomilla FR, Liotta LF, Megna B, Paganini MC (2017) Eur J Inorg Chem 2017:1900–1907CrossRefGoogle Scholar
  17. 17.
    Tong T, Li YM, Hou R, Wang XH, Wang ST (2017) RSC Adv 7:42422–42429CrossRefGoogle Scholar
  18. 18.
    Selvakumar K, Shanmugaprabha T, Kumaresan M, Sami P (2018) Synth Commun 48:223–232CrossRefGoogle Scholar
  19. 19.
    Morinaga H, Nakajima L, Nishioka Y, Yamamoto H, Hatayama M, Nakabayashi A (2016) Polym Bull 73:435–448CrossRefGoogle Scholar
  20. 20.
    Yu FL, Wang QY, Li GX, Yuan B, Xie CX, Yu ST (2017) Chem Res Chin Univ 309:298–304Google Scholar
  21. 21.
    Fang LN, Wang G, Guo WC (2017) Colloids Surf A 533:204–212CrossRefGoogle Scholar
  22. 22.
    Wang SL, Tang RZ, Zhang YZ, Chen T, Wang GY (2015) Chem Eng Sci 138:93–98CrossRefGoogle Scholar
  23. 23.
    Song IK, Barteau MA (2004) J Mol Catal A 212:229–236CrossRefGoogle Scholar
  24. 24.
    da Silva Rocha KA, Robles-Dutenhefner PA, Sousa EM, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2007) Appl Catal A 317(2):171–174CrossRefGoogle Scholar
  25. 25.
    Yang S, Gutiérrez OY, Herranz J, Lercher JA (2016) Appl Catal B 182:236–246CrossRefGoogle Scholar
  26. 26.
    Fan LH, Zhang LY, Shen YM, Liu DB, Nasarul W, Md MH (2016) Bull Chem React Eng Catal 11:354–362CrossRefGoogle Scholar
  27. 27.
    Liu TZ, Zhou H, Han BB, Gu YB, Li SQ, Zheng J, Zhong X, Zhuang GL, Wang JG (2017) ACS Sustain Chem Eng 5:11628–11636CrossRefGoogle Scholar
  28. 28.
    Liu BJ, Lu LH, Wang BC, Cai TX, Katsuyoshi I (1998) Appl Catal A 171:117–122CrossRefGoogle Scholar
  29. 29.
    Meng QL, Hou MQ, Liu HZ, Song JL, Han BX (2017) Nat Commun 8:14190CrossRefGoogle Scholar
  30. 30.
    Guan QQ, Zeng YH, Shen JJ, Chai XS, Miao RR, Li B, Ning P (2016) Chem Eng J 299:63–73CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina
  3. 3.Department of Chemistry and BiochemistryUniversity of MichiganFlintUSA
  4. 4.Department of Chemical & Biomolecular EngineeringUniversity of Tennessee KnoxvilleKnoxvilleUSA

Personalised recommendations