Advertisement

Effect of Cu-Promotion on the Performance of Molybdenum Sulfide for Hydrotreating of FCC Gasoline

  • Paulino Betancourt
  • Susana Pinto-CastillaEmail author
Article
  • 10 Downloads

Abstract

Copper sulfide (either supported or unsupported) has received poor attention as promoter since this chalcogenide displayed modest hydrotreatment activity. In this sense, was evaluated the potential of sulfide CuMo catalyst in the FCC gasoline hydrotreatment. A MoS2 bulk and the industrial NiMo/Al2O3 catalyst were used as reference. According to the results obtained, the NiMo commercial catalyst had higher HDS, HDN, and HYD activity, but with a significant decrease in the octane number (RON). While the CuMo catalysts showed a lower response towards hydrotreatment, maintaining its octane value. According to the results obtained in the characterizations carried out (XRD, XPS, TPR, physisorption of N2, among others), we propose that copper species could be generating geometric and/or electronic changes in the CuMoS phases, increasing the number of active sites. Additionally, the incorporation of the Cu in the crystalline structure could be modifying its electronic structure, granting a metallic character to the active phase. The work demonstrates the potential of CuMo catalyst for HDT of FCC gasoline.

Graphical Abstract

Keywords

Copper-molybdenum catalysts Hydrotreating FCC gasoline 

Notes

Acknowledgements

Authors thanks PDVSA for the FCC gasoline samples used in this paper.

References

  1. 1.
    Liu J, Zhao Sh, Chen X, Shen B (2016) Fuel 166:467–472CrossRefGoogle Scholar
  2. 2.
    Nadeina KA, Klimov OV, Pereima VY, Koryakina GI, Danilova IG, Prosvirin IP, Gerasimov EY, Yegizariyan AM, Noskov AS (2016) Catal Today 271:4–15CrossRefGoogle Scholar
  3. 3.
    Viswanadham N, Negi BS, Garg MO, Sundaram M, Sairam B, Agarwal AK (2007) Fuel 86:1290–1297CrossRefGoogle Scholar
  4. 4.
    Brunet S, Mey D, Pérot G, Bouchy C, Diehl F (2005) Appl Catal A 278:143–172CrossRefGoogle Scholar
  5. 5.
    Busca G (2014) Metal catalysts for hydrogenations and dehydrogenations. Heterogeneous catalytic materials. solid state chemistry, surface chemistry and catalytic behaviour, vol 9. Elsevier, Amsterdam, pp 297–343Google Scholar
  6. 6.
    Chen B, Dingerdissen U, Krauter JGE, Lansink Rotgerink HGJ, Möbus K, Ostgard DJ, Panster P, Riermeier TH, Seebald S, Tacke T, Trauthwein H (2005) Appl Catal A 280:17–46CrossRefGoogle Scholar
  7. 7.
    Ishutenko D, Mozhaev A, Salnikov V, Nikulshin P (2016) React Kinet Mech Catal 119:615–627CrossRefGoogle Scholar
  8. 8.
    Nikulshin PA, Tomina NN, Pimerzin AA, Stakheev AY, Mashkovsky IS, Kogan VM (2011) Appl Catal A 393:146–152CrossRefGoogle Scholar
  9. 9.
    Zhao YF, Yang Y, Mims C, Peden C, Li J, Mei D (2011) J Catal 281:199–211CrossRefGoogle Scholar
  10. 10.
    Harris S, Chianelli RR (1986) J Catal 98:17–31CrossRefGoogle Scholar
  11. 11.
    Kibsgaard J, Tuxen A, Knudsen KG, Brorson M, Topsøe H, Lægsgaard EJ (2010) J Catal 272:195–203CrossRefGoogle Scholar
  12. 12.
    Boukoberinea Y, Hamada B (2016) Arab J Chem 9:S522–S527CrossRefGoogle Scholar
  13. 13.
    Liu H, Yin C, Li H, Liu B, Li X, Chai Y, Li Y, Liu C (2014) Fuel 129:138–146CrossRefGoogle Scholar
  14. 14.
    Hernández-Maldonado AJ, Yang RT (2004) J Am Chem Soc 126:992–993CrossRefGoogle Scholar
  15. 15.
    Dai W, Zhou YP, Li SN, Li W, Su W, Sun Y, Zhou L (2006) Ind Eng Chem Res 45:7892–7896CrossRefGoogle Scholar
  16. 16.
    Meille V, Schulz E, Lemaire M, Vrinat M (1997) J Catal 170:29–36CrossRefGoogle Scholar
  17. 17.
    Trakarnpruk W, Seentrakoon B (2007) Ind Eng Chem Res 46:1874–1882CrossRefGoogle Scholar
  18. 18.
    Hatanaka S, Yamada M, Sadakane O (1997) Ind Eng Chem Res 36:1519–1523CrossRefGoogle Scholar
  19. 19.
    Cheng WC, Kim G, Peters AW, Zhao X, Rajagopalan K, Ziebarth MS, Pereira CJ (1998) Catal Rev Sci Eng 40:39–79CrossRefGoogle Scholar
  20. 20.
    Leflaive P, Lemberton JL, Pérot G, Mirgain C, Carriat JY, Colin JM (2002) Appl Catal A 227:201–215CrossRefGoogle Scholar
  21. 21.
    Munaretto A, Ruette F, Sánchez M, Rodtfguez-Arias E (2006) Ciencia 14:83–95Google Scholar
  22. 22.
    Chen W, Chen H, Zhu H, Gao Q, Luo J, Wang Y, Zhang S, Zhang K, Wang C, Xiong Y, Wu Y, Zheng X, Chu W, Song L, Wu Z (2014) Small 10:4637–4644CrossRefGoogle Scholar
  23. 23.
    He J, Chen L, Wang F, Liu Y, Chen P, Au CT, Yin SF (2016) ChemSusChem 9:624–630CrossRefGoogle Scholar
  24. 24.
    Scofield J, Hartree-Slater J (1976) J Electron Spectrosc Relat Phenom 8:129–137CrossRefGoogle Scholar
  25. 25.
    Feduschak T, Akimov A, Morozov M, Uymin M, Zaikovskii V, Prosvirin I, Vosmerikov A, Zhuravkov S, Vlasov V, Kogan V (2016) C R Chim 19:1315–1325CrossRefGoogle Scholar
  26. 26.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation Physical Electronics Division, Eden PrairieGoogle Scholar
  27. 27.
    Yin M, Wu CK, Lou Y, Burda C, Koberstein JT, Zhu Y, O’Brien S (2005) J Am Chem Soc 127:9506–9511CrossRefGoogle Scholar
  28. 28.
    Afanasiev P (2006) Appl Catal A 303:110–115CrossRefGoogle Scholar
  29. 29.
    Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Fuel 87:1195–1206CrossRefGoogle Scholar
  30. 30.
    López Cordero R, López Agudo A (2000) Appl Catal A 202:23–35CrossRefGoogle Scholar
  31. 31.
    Scheffer B, Dekker NJJ, Mangnus PJ, Moulijn JA (1990) J Catal 121:31–46CrossRefGoogle Scholar
  32. 32.
    Mangnus PJ, Riezebos A, Vanlangeveld AD, Moulijin JA (1995) J Catal 151:178–191CrossRefGoogle Scholar
  33. 33.
    Topsøe NY, Tuxen A, Hinnemann B, Lauritsen JV, Knudsen KG, Besenbacher F, Topsøe H (2011) J Catal 279:337–351CrossRefGoogle Scholar
  34. 34.
    Yao HC (1981) J Catal 2:440–444CrossRefGoogle Scholar
  35. 35.
    Topsoe NY, Topsoe H (1993) J Catal 139:641–651CrossRefGoogle Scholar
  36. 36.
    Sobczynski A, Zmierczak W (1991) React Kinet Catal Lett 44:511–516CrossRefGoogle Scholar
  37. 37.
    Yoosuk B, Hyung Kim J, Song C, Ngamcharussrivichai C, Prasassarakich P (2008) Catal Today 130:14–23CrossRefGoogle Scholar
  38. 38.
    Wang W, Zhang K, Li L, Wu K, Liu P, Yang Y (2014) Ind Eng Chem Res 53:19001–19009CrossRefGoogle Scholar
  39. 39.
    Boudart M, Djega-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions, vol 4. Princeton University Press, Princeton, pp 118–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias, Centro de Catálisis, Petróleo y Petroquímica, Escuela de QuímicaUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Laboratorio de Fisicoquímica de SuperficiesCentro de Química, IVICCaracasVenezuela

Personalised recommendations