Advertisement

Lithium Doping Y2O3: A Highly Efficient Solid Base Catalyst for Biodiesel Synthesis with Excellent Water Resistance and Acid Resistance

  • Pingbo ZhangEmail author
  • Xuan Chen
  • Chengguang Yue
  • Mingming FanEmail author
  • Pingping Jiang
  • Yuming Dong
Article
  • 7 Downloads

Abstract

A series of nLi–Y2O3 catalysts with different proportion of lithium oxide were prepared by wet impregnation method, the 0.1Li–Y2O3 catalyst exhibited highly efficient catalytic activity in biodiesel synthesis. The as-prepared catalysts were characterized by XRD, SEM, TEM, CO2–TPD and XPS techniques. The results indicated that the significant change in the basicity of Y2O3 with the addition of Li was attributed to the strong interaction produced by electron transfer between the components of the 0.1Li–Y2O3 catalyst and the distortion areas formed at the interface of crystal grains (grain boundaries) in Y2O3 nanocrystals. The load of lithium enhanced electron pair donating ability of the surface oxygen atom which made the catalyst easier to capture H+ from CH3OH, and promoted the yield of biodiesel eventually. At the same time, the experiment verified that the catalyst had outstanding reusability and universality on transesterification of different oils into biodiesel. When the acid value was 8.1 mg KOH/g, the yield of biodiesel still exceeded 80%. Furthermore, the yield of biodiesel was maintained above 90% after adding 2 wt% of water to palm oil, which indicated that 0.1Li–Y2O3 catalyst had good water resistance. The 0.1Li–Y2O3 catalyst was believed as an exceptional competitive catalyst for future commercial biodiesel production applications.

Graphic Abstract

Keywords

Solid base Basic site Biodiesel Transesterification Water resistance 

Notes

Acknowledgements

This study was funded by the Key Research and Development Program of Jiangsu Province (Industry Outlook and Common Key Technologies) (Grant No. BE2015204), the National Natural Science Foundation of China (NSFC) (Grant No. 21306063), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51623A), MOE & SAFEA for the 111 Project (Grant No. B13025) and International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University. We gratefully acknowledged to these funded groups.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2019_2846_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 87 kb)

References

  1. 1.
    Marwaha A, Rosha P, Mohapatra SK, Mahla SK, Dhir A (2018) Fuel Process Technol 181:175–186CrossRefGoogle Scholar
  2. 2.
    Wang S, Shan R, Wang Y, Lu L, Yuan H (2019) Renew Energy 130:41–49CrossRefGoogle Scholar
  3. 3.
    Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887–7916CrossRefGoogle Scholar
  4. 4.
    Souza RD, Vats T, Chattree A, Siril PF (2018) Catal Lett 148:2848–2855CrossRefGoogle Scholar
  5. 5.
    Ngu TA, Li Z (2014) Green Chem 16:1202–1210CrossRefGoogle Scholar
  6. 6.
    Teo SH, Islam A, Yusaf T, Yun TY (2014) Energy 78:63–71CrossRefGoogle Scholar
  7. 7.
    Antonio DC, Amancio LP, Rosset IG (2018) Catal Lett 148:3214–3222CrossRefGoogle Scholar
  8. 8.
    Yang XX, Wang YT, Yang YT, Feng EZ, Luo J, Zhang F, Yang WJ, Bao GR (2018) Energy Convers Manag 164:112–121CrossRefGoogle Scholar
  9. 9.
    Reyero I, Arzamendi G, Zabala S, Gandía LM (2015) Fuel Process Technol 129:147–155CrossRefGoogle Scholar
  10. 10.
    Narkhede N, Singh S, Patel A (2015) Green Chem 17:89–107CrossRefGoogle Scholar
  11. 11.
    Todorović ZB, Troter DZ, Đokić-Stojanović DR, Veličković AV, Avramović JM, Stamenković OS, Veselinović LM, Veljković VB (2019) Fuel 237:903–910CrossRefGoogle Scholar
  12. 12.
    Rabie AM, Shaban M, Abukhadra MR, Hosny R, Ahmed SA, Negm NA (2019) J Mol Liq 279:224–231CrossRefGoogle Scholar
  13. 13.
    Prabu M, Manikandan M, Kandasamy P, Kalaivani PR, Rajendiran N, Raja T (2019) ACS Omega 4:3500–3507CrossRefGoogle Scholar
  14. 14.
    Du L, Ding S, Li Z, Lv E, Lu J, Ding J (2018) Energy Convers Manag 173:728–734CrossRefGoogle Scholar
  15. 15.
    Ayodeji AA, Modupe OE, Rasheed B, Ayodele JM (2018) Data Br 19:1466–1473CrossRefGoogle Scholar
  16. 16.
    Deboni TM, Hirata GAM, Shimamoto GG, Tubino M, Meirelles AJdA (2018) Chem Eng J 333:686–696CrossRefGoogle Scholar
  17. 17.
    Salimi Z, Hosseini SA (2019) Fuel 239:1204–1212CrossRefGoogle Scholar
  18. 18.
    Rezayan A, Taghizadeh M (2018) Process Saf Environ Prot 117:711–721CrossRefGoogle Scholar
  19. 19.
    Qin F, Nohair B, Shen W, Xu H, Kaliaguine S (2016) Catal Lett 146:1273–1282CrossRefGoogle Scholar
  20. 20.
    Shi M, Zhang P, Fan M, Jiang P, Dong Y (2017) Fuel 197:343–347CrossRefGoogle Scholar
  21. 21.
    Bet-Moushoul E, Farhadi K, Mansourpanah Y, Nikbakht AM, Molaei R, Forough M (2016) Fuel 164:119–127CrossRefGoogle Scholar
  22. 22.
    Kouzu M, Fujimori A, Suzuki T, Koshi K, Moriyasu H (2017) Fuel Process Technol 165:94–101CrossRefGoogle Scholar
  23. 23.
    Banković-Ilić IB, Miladinović MR, Stamenković OS, Veljković VB (2017) Renew Sustain Energy Rev 72:746–760CrossRefGoogle Scholar
  24. 24.
    Alsharifi M, Znad H, Hena S, Ang M (2017) Renew Energy 114:1077–1089CrossRefGoogle Scholar
  25. 25.
    Maleki H, Kazemeini M, Larimi AS, Khorasheh F (2017) J Ind Eng Chem 47:399–404CrossRefGoogle Scholar
  26. 26.
    Lu H, Yu X, Shuang Y, Yang H, Tu ST (2016) Fuel 165:215–223CrossRefGoogle Scholar
  27. 27.
    Shen Y, Li F, Liu Z, Wang H, Shen J (2018) J Energy Inst.  https://doi.org/10.1016/j.joei.2018.08.005 Google Scholar
  28. 28.
    Amini G, Najafpour GD, Rabiee SM, Ghoreyshi AA (2013) Chem Eng Technol 36:1708–1712Google Scholar
  29. 29.
    Khayoon MS, Hameed BH (2013) Appl Catal A 460–461:61–69CrossRefGoogle Scholar
  30. 30.
    Miguel LR, Ulberth-Buchgraber M, Held A (2014) J Chromatogr A 1338:127–135CrossRefGoogle Scholar
  31. 31.
    Song X, Wu Y, Cai F, Pan D, Xiao G (2017) Appl Catal A 532:77–85CrossRefGoogle Scholar
  32. 32.
    Diez VK, Apesteguia CR, Di Cosimo JI (2006) J Catal 240:235–244CrossRefGoogle Scholar
  33. 33.
    Teo SH, Islam A, Ng FL, Taufiq-Yap YH (2015) RSC Adv 5:47140–47152CrossRefGoogle Scholar
  34. 34.
    Wen Z, Yu X, Tu ST, Yan J, Dahlquist E (2010) Appl Energy 87:743–748CrossRefGoogle Scholar
  35. 35.
    Berger T, Schuh J, Sterrer M, Diwald O, Knözinger E (2007) J Catal 247:61–67CrossRefGoogle Scholar
  36. 36.
    GonçAlves AM, Lima-Corrêa RAB, Assaf JM, Nogueira ARA (2017) Catal Today 279:177–186CrossRefGoogle Scholar
  37. 37.
    Xie Y, Wang L, Liu B, Zhu L, Shi S, Wang X (2018) Mater Des 160:918–925CrossRefGoogle Scholar
  38. 38.
    Vidruk R, Landau MV, Herskowitz M, Talianker M, Frage N, Ezersky V, Froumin N (2009) J Catal 263:196–204CrossRefGoogle Scholar
  39. 39.
    Puna JF, Gomes JF, Bordado JC, Correia MJN, Dias APS (2014) Appl Catal A 470:451–457CrossRefGoogle Scholar
  40. 40.
    Kondawar SE, Potdar AS, Rode CV (2015) RSC Adv 5:16452–16460CrossRefGoogle Scholar
  41. 41.
    Wu Y, Song X, Cai F, Xiao G (2017) J Alloys Compd 720:360–368CrossRefGoogle Scholar
  42. 42.
    Radvanyi E, Vito ED, Porcher W, Larbi SJS (2014) J Anal At Spectrom 29:1120–1131CrossRefGoogle Scholar
  43. 43.
    Yu P, Zhang K, Huang H, Mao W, Li Q, Zhang W, Hu C, Zheng W (2017) Appl Surf Sci 410:470–478CrossRefGoogle Scholar
  44. 44.
    Leng J, Yu Z, Li Y, Zhang D, Liao X, Xue W (2010) Appl Surf Sci 256:5832–5836CrossRefGoogle Scholar
  45. 45.
    Barve SA, Mithal N, Deo MN, Chand N, Bhanage BM, Gantayet LM, Patil DS (2010) Surf Coat Technol 204(20):3167–3172CrossRefGoogle Scholar
  46. 46.
    Wen Z, Yu X, Tu S-T, Yan J, Dahlquist E (2010) Appl Energy 87:743–748CrossRefGoogle Scholar
  47. 47.
    Kim HJ, Kang BS, Kim MJ, Park YM, Kim DK, Lee JS, Lee KY (2004) Catal Today 93:315–320CrossRefGoogle Scholar
  48. 48.
    Zhou Q, Zhang H, Chang F, Li H, Pan H, Xue W, Hu D-Y, Yang S (2015) J Ind Eng Chem 31:385–392CrossRefGoogle Scholar
  49. 49.
    Rattanaphra D, Soodjit P, Thanapimmetha A, Saisriyoot M, Srinophakun P (2019) Renew Energy 131:1128–1137CrossRefGoogle Scholar
  50. 50.
    Kumar D, Kumar G (2010) Poonam, Singh CP. Ultrason Sonochem 17:555–559CrossRefGoogle Scholar
  51. 51.
    Singh D, Ganesh A, Mahajani S (2015) Clean Technol Environ Policy 17:1103–1110CrossRefGoogle Scholar
  52. 52.
    Liu Y, Zhang P, Fan M, Jiang P (2016) Fuel 164:314–321CrossRefGoogle Scholar
  53. 53.
    Tang Y, Li L, Wang S, Cheng Q, Zhang J (2016) Environ Prog Sustain Energy 35:257–262CrossRefGoogle Scholar
  54. 54.
    Fan M, Liu Y, Zhang P, Jiang P (2016) Fuel Process Technol 149:163–168CrossRefGoogle Scholar
  55. 55.
    Sun J, Yang J, Li S, Xu X (2016) Catal Commun 83:35–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations