Advertisement

Effect of Copper Doping Over GdFeO3 Perovskite on Soot Oxidation Activity

  • Hari Prasad Uppara
  • Harshini DasariEmail author
  • Sunit Kumar Singh
  • Nitin K. Labhsetwar
  • M. S. Murari
Article
  • 2 Downloads

Abstract

A series of Fe substituted (B-site doping) by Cu on the GdFeO3 perovskite materials (GdFe1−xCuxO3±δ, x = 0 to 0.3) were synthesized using EDTA-Citrate method. The effect of Cu loading on the physio-chemical investigations of the obtained samples was carried out using X-ray Diffraction technique, BET surface area analysis, FESEM/EDS, TEM analysis, XPS, H2-TPR, and Soot-TPR. The performance of perovskites towards soot oxidation was analyzed in detail using TGA equipment. The results of the XRD pattern shows that upto10 mol% of Cu doping was dissolved into the lattice of GdFeO3. H2-TPR results reveal that the samples with Cu loading exhibit the successive reductions of Cu2+, Fe3+, and Fe2+ which implies the presence of multiple oxidation states in the perovskite. This induces the oxygen vacancies in the doped samples (due to charge compensation) leading to an increase in soot oxidation activity. According to the XPS results it was observed that the surface composition of Gd is in +3, Fe in +2 and +3 and Cu in +2 oxidation states. Moreover, the O1s peaks of the doped samples clearly evidenced an increase in adsorbed oxygen species when compared to the un-doped one. Among the doped samples, 10 mol% of Cu loading in GdFeO3 showed the higher activity of oxygen species. The T50% (temperature at 50% conversions) of the samples was in the order of GFCu30% < GFCu10% < GFCu5% < GFCu15% < GdFeO3 < bare soot.

Graphic Abstract

Keywords

Perovskite Soot oxidation GdFeO3 Cu doping 

Notes

Acknowledgements

We would like to thank the Department of Science and Technology- Science and Engineering Research Council (DST-SERB), India for funding this project (DST SERB: EMR/2016/002598).

References

  1. 1.
    Stanmore BR, Brilhac JF, Gilot P (2001) The oxidation of soot: a review of experiments, mechanisms and models. Carbon N Y 39:2247–2268.  https://doi.org/10.1016/S0008-6223(01)00109-9 CrossRefGoogle Scholar
  2. 2.
    Niessner R (2014) The many faces of soot: characterization of soot nanoparticles produced by engines. Angew Chemie Int Ed 53:12366–12379.  https://doi.org/10.1002/anie.201402812 Google Scholar
  3. 3.
    Mendoza-Villafuerte P, Suarez-Bertoa R, Giechaskiel B et al (2017) NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Sci Total Environ 609:546–555.  https://doi.org/10.1016/j.scitotenv.2017.07.168 CrossRefGoogle Scholar
  4. 4.
    Giakoumis EG (2016) Review of some methods for improving transient response in automotive diesel engines through various turbocharging configurations. Front Mech Eng.  https://doi.org/10.3389/fmech.2016.00004 Google Scholar
  5. 5.
    Fiebig M, Wiartalla A, Holderbaum B, Kiesow S (2014) Particulate emissions from diesel engines: correlation between engine technology and emissions. J Occup Med Toxicol 9:1–18.  https://doi.org/10.1186/1745-6673-9-6 CrossRefGoogle Scholar
  6. 6.
    Xu J, Liu J, Zhao Z et al (2011) Easy synthesis of three-dimensionally ordered macroporous La1 − xKxCoO catalysts and their high activities for the catalytic combustion of soot. J Catal 282:1–12.  https://doi.org/10.1016/j.jcat.2011.03.024 CrossRefGoogle Scholar
  7. 7.
    Yu X, Zhao Z, Wei Y, Liu J (2017) Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: facile synthesis, low cost and high catalytic activity for diesel soot combustion. Sci Rep 7:43894.  https://doi.org/10.1038/srep43894 CrossRefGoogle Scholar
  8. 8.
    Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in Diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A Gen 509:75–96.  https://doi.org/10.1016/j.apcata.2015.10.016 CrossRefGoogle Scholar
  9. 9.
    Liu S, Wu X, Luo H et al (2015) Pt/Zeolite catalysts for soot oxidation: influence of hydrothermal aging. J Phys Chem C 119:17218–17227.  https://doi.org/10.1021/acs.jpcc.5b04882 CrossRefGoogle Scholar
  10. 10.
    Lim CB, Kusaba H, Einaga H, Teraoka Y (2011) Catalytic performance of supported precious metal catalysts for the combustion of diesel particulate matter. Catal Today 175:106–111.  https://doi.org/10.1016/j.cattod.2011.03.062 CrossRefGoogle Scholar
  11. 11.
    Oi-Uchisawa J, Obuchi A, Enomoto R et al (2000) Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black. Appl Catal B Environ 26:17–24.  https://doi.org/10.1016/S0926-3373(99)00142-3 CrossRefGoogle Scholar
  12. 12.
    Białobok B, Trawczyński J, Rzadki T et al (2007) Catalytic combustion of soot over alkali doped SrTiO3. Catal Today 119:278–285.  https://doi.org/10.1016/j.cattod.2006.08.024 CrossRefGoogle Scholar
  13. 13.
    Legutko P, Jakubek T, Kaspera W et al (2014) Soot oxidation over K-doped manganese and iron spinels—how potassium precursor nature and doping level change the catalyst activity. Catal Commun 43:34–37.  https://doi.org/10.1016/j.catcom.2013.08.021 CrossRefGoogle Scholar
  14. 14.
    Peralta MA, Ulla MA, Querini CA (2010) Diesel soot and NOxabatement: K/La2O3catalyst stability. Appl Catal B Environ 101:38–44.  https://doi.org/10.1016/j.apcatb.2010.08.031 CrossRefGoogle Scholar
  15. 15.
    Van Setten BAAL, Van Dijk R, Jelles SJ et al (1999) The potential of supported molten salts in the removal of soot from diesel exhaust gas. Appl Catal B Environ 21:51–61.  https://doi.org/10.1016/S0926-3373(99)00008-9 CrossRefGoogle Scholar
  16. 16.
    Querini CA, Ulla MA, Requejo F et al (1998) Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co, K/MgO catalysts. Appl Catal B Environ 15:5–19.  https://doi.org/10.1016/S0926-3373(97)00032-5 CrossRefGoogle Scholar
  17. 17.
    Liu S, Wu X, Liu W et al (2016) Soot oxidation over CeO2and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J Catal 337:188–198.  https://doi.org/10.1016/j.jcat.2016.01.019 CrossRefGoogle Scholar
  18. 18.
    Shan W, Yang L, Ma N, Yang J (2012) Catalytic activity and stability of K/CeO 2 catalysts for diesel soot oxidation. Chin J Catal 33:970–976.  https://doi.org/10.1016/S1872-2067(11)60385-9 CrossRefGoogle Scholar
  19. 19.
    Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B Environ 146:1–11.  https://doi.org/10.1016/j.apcatb.2013.02.033 CrossRefGoogle Scholar
  20. 20.
    Junwu Z, Xiaojie S, Yanping W et al (2007) Solution-phase synthesis and characterization of perovskite LaCoO3 nanocrystals via a co-precipitation route. J Rare Earths 25:601–604.  https://doi.org/10.1016/S1002-0721(07)60570-5 CrossRefGoogle Scholar
  21. 21.
    Zhang R, Luo N, Chen B, Kaliaguine S (2010) Soot combustion over lanthanum cobaltites and related oxides for diesel exhaust treatment. Energy Fuels 24:3719–3726.  https://doi.org/10.1021/ef901279w CrossRefGoogle Scholar
  22. 22.
    Fang S, Wang L, Sun Z et al (2014) Catalytic removal of diesel soot particulates over K and Mg substituted La1 - XKxCo1 - yMgyO3 perovskite oxides. Catal Commun 49:15–19.  https://doi.org/10.1016/j.catcom.2014.01.029 CrossRefGoogle Scholar
  23. 23.
    Feng N, Wu Y, Meng J et al (2015) Catalytic combustion of soot over Ce and Co substituted three-dimensionally ordered macroporous La1 − xCexFe1-yCoyO3 perovskite catalysts. RSC Adv 5:91609–91618.  https://doi.org/10.1039/c5ra14997e CrossRefGoogle Scholar
  24. 24.
    Goldwasser MR, Rivas ME, Lugo ML et al (2005) Combined methane reforming in presence of CO2 and O2 over LaFe1 − xCoxO3 mixed-oxide perovskites as catalysts precursors. Catal Today 107:106–113CrossRefGoogle Scholar
  25. 25.
    Huang X, Zhao G, Wang G, Irvine JTS (2018) Synthesis and applications of nanoporous perovskite metal oxides. Chem Sci 9:3623–3637.  https://doi.org/10.1039/c7sc03920d CrossRefGoogle Scholar
  26. 26.
    Marchetti L, Forni L (1998) Catalytic combustion of methane over perovskites. Appl Catal B 15:179–187CrossRefGoogle Scholar
  27. 27.
    Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) CO2dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3perovskite (M = Bi Co, Cr, Cu, Fe): roles of lattice oxygen on C-H activation and carbon suppression. Int J Hydrog Energy 37:11195–11207.  https://doi.org/10.1016/j.ijhydene.2012.04.059 CrossRefGoogle Scholar
  28. 28.
    Schön A, Dacquin J-P, Dujardin C, Granger P (2017) Catalytic activity and thermal stability of LaFe1 − xCuxO3 and La2CuO4 perovskite solids in three-way-catalysis. Top Catal 60:300–306.  https://doi.org/10.1007/s11244-016-0615-x CrossRefGoogle Scholar
  29. 29.
    López-Suárez FE, Bueno-López A, Illán-Gómez MJ et al (2008) Copper catalysts for soot oxidation: alumina versus perovskite supports. Environ Sci Technol 42:7670–7675.  https://doi.org/10.1021/es8009293 CrossRefGoogle Scholar
  30. 30.
    López-Suárez FE, Bueno-López A, Illán-Gómez MJ, Trawczynski J (2014) Potassium-copper perovskite catalysts for mild temperature diesel soot combustion. Appl Catal A Gen 485:214–221.  https://doi.org/10.1016/j.apcata.2014.07.037 CrossRefGoogle Scholar
  31. 31.
    Wiglusz RJ, Kordek K, Małecka M et al (2015) A new approach in the synthesis of La1-xGdxFeO3 perovskite nanoparticles-structural and magnetic characterization. Dalton Trans 44:20067–20074.  https://doi.org/10.1039/c5dt03378k CrossRefGoogle Scholar
  32. 32.
    Sahoo S, Mahapatra PK, Choudhary RNP et al (2016) Structural, electrical and magnetic characteristics of improper multiferroic: GdFeO3. Mater Res Express 3:1–20.  https://doi.org/10.1088/2053-1591/3/6/065017 Google Scholar
  33. 33.
    Niu C, Hui YN (2005) Establishment of senescent models of human retinal pigment epithelium cells cultured in vitro. Chin J Clin Rehabil 9:89–91.  https://doi.org/10.1016/j.molcata.2005.01.022 Google Scholar
  34. 34.
    Bashir A, Ikram M, Kumar R, Lisboa-Filho PN (2012) Structural, electronic structure and magnetic studies of GdFe 1-xNi xO 3 (x ≤ 0.5). J Alloys Compd 521:183–188.  https://doi.org/10.1016/j.jallcom.2012.01.121 CrossRefGoogle Scholar
  35. 35.
    Zhang N, Dong S, Chang FG et al (2012) Grain size effect on GdFeO3-type lattice distortion and ferroelectric behavior in DyMnO3. Phys B Condens Matter 407:3736–3739.  https://doi.org/10.1016/j.physb.2012.05.053 CrossRefGoogle Scholar
  36. 36.
    Husain S, Keelani AOA, Khan W (2018) Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3orthoferrite. Nano-Struct Nano-Objects 15:17–27.  https://doi.org/10.1016/j.nanoso.2018.03.002 CrossRefGoogle Scholar
  37. 37.
    Al-fatesh AS, Aidid A, Hamza A et al (2019) CO 2 reforming of CH 4: effect of Gd as promoter for Ni supported over MCM-41 as catalyst. Renew Energy 140:658–667.  https://doi.org/10.1016/j.renene.2019.03.082 CrossRefGoogle Scholar
  38. 38.
    Anantharaman AP, Dasari HP, Dasari H, Babu GUB (2018) Surface morphology and phase stability effect of Ceria-Hafnia (CHx) binary metal oxides on soot oxidation activity. Appl Catal A Gen 566:181–189.  https://doi.org/10.1016/j.apcata.2018.08.019 CrossRefGoogle Scholar
  39. 39.
    Shao Z (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Memb Sci 172:177–188.  https://doi.org/10.1016/S0376-7388(00)00337-9 CrossRefGoogle Scholar
  40. 40.
    Caronna T, Fontana F, Sora IN, Pelosato R (2009) Chemical synthesis and structural characterization of the substitution compound LaFe1-xCuxO3 (x = 0-0.40). Mater Chem Phys 116:645–648.  https://doi.org/10.1016/j.matchemphys.2009.05.020 CrossRefGoogle Scholar
  41. 41.
    Tang P, Hu Y, Lin T et al (2014) Preparation of nanocrystalline GdFeO 3 by microwave method and its visible-light photocatalytic activity. Integr Ferroelectr 153:73–78.  https://doi.org/10.1080/10584587.2014.902720 CrossRefGoogle Scholar
  42. 42.
    Romero M, Gómez RW, Marquina V et al (2014) Synthesis by molten salt method of the AFeO3 system (A = La, Gd) and its structural, vibrational and internal hyperfine magnetic field characterization. Phys B Condens Matter 443:90–94.  https://doi.org/10.1016/j.physb.2014.03.024 CrossRefGoogle Scholar
  43. 43.
    Zhu Y (1999) Preparation of nanosized Gd 2 CuO 4 cuprate using amorphous heteronuclear complex as a precursor at low temperature. Mater Chem 4:4969–4973Google Scholar
  44. 44.
    Fang YZ, Liu Y, Zhang LH (2011) LaFeO3-supported nano Co-Cu catalysts for higher alcohol synthesis from syngas. Appl Catal A Gen 397:183–191.  https://doi.org/10.1016/j.apcata.2011.02.032 CrossRefGoogle Scholar
  45. 45.
    Torregrosa-Rivero V, Albaladejo-Fuentes V, Sánchez-Adsuar M-S, Illán-Gómez M-J (2017) Copper doped BaMnO 3 perovskite catalysts for NO oxidation and NO 2 -assisted diesel soot removal. RSC Adv 7:35228–35238.  https://doi.org/10.1039/C7RA04980C CrossRefGoogle Scholar
  46. 46.
    Doroftei C, Leontie L (2017) Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Adv 7:27863–27871.  https://doi.org/10.1039/c7ra03916f CrossRefGoogle Scholar
  47. 47.
    Dai N, Feng J, Wang Z et al (2013) Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5 − xNixMo0.5O6 − δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. J Mater Chem A 1:14147.  https://doi.org/10.1039/c3ta13607h CrossRefGoogle Scholar
  48. 48.
    Venkataswamy P, Jampaiah D, Rao KN, Reddy BM (2014) Nanostructured Ce0.7Mn0.3O2 − δ and Ce0.7Fe0.3O2 − δ solid solutions for diesel soot oxidation. Appl Catal A Gen 488:1–10.  https://doi.org/10.1016/j.apcata.2014.09.014 CrossRefGoogle Scholar
  49. 49.
    Pecchi G, Dinamarca R, Campos CM et al (2014) Soot oxidation on silver-substituted LaMn 0.9 Co 0.1 O 3 perovskites. Ind Eng Chem Res 53:10090–10096.  https://doi.org/10.1021/ie501277x CrossRefGoogle Scholar
  50. 50.
    Sudarsanam P, Mallesham B, Reddy PS et al (2014) Nano-Au/CeO2 catalysts for CO oxidation: influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl Catal B Environ 144:900–908.  https://doi.org/10.1016/j.apcatb.2013.08.035 CrossRefGoogle Scholar
  51. 51.
    Zhu J, Li H, Zhong L et al (2014) Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4:2917–2940.  https://doi.org/10.1021/cs500606g CrossRefGoogle Scholar
  52. 52.
    Mukherjee D, Rao BG, Reddy BM (2016) CO and soot oxidation activity of doped ceria: influence of dopants. Appl Catal B Environ 197:105–115.  https://doi.org/10.1016/j.apcatb.2016.03.042 CrossRefGoogle Scholar
  53. 53.
    Fang F, Feng N, Wang L et al (2018) Fabrication of perovskite-type macro/mesoporous La1-xKxFeO3-Δ nanotubes as an efficient catalyst for soot combustion. Appl Catal B Environ 236:184–194.  https://doi.org/10.1016/j.apcatb.2018.05.030 CrossRefGoogle Scholar
  54. 54.
    Takise K, Manabe S, Muraguchi K et al (2017) Anchoring effect and oxygen redox property of Co/La0.7Sr0.3AlO3-Δ perovskite catalyst on toluene steam reforming reaction. Appl Catal A Gen 538:181–189.  https://doi.org/10.1016/j.apcata.2017.03.026 CrossRefGoogle Scholar
  55. 55.
    Wan Y, Ma J, Wang Z et al (2004) Selective catalytic reduction of NO over Cu-Al-MCM-41. J Catal 227:242–252.  https://doi.org/10.1016/j.jcat.2004.07.016 CrossRefGoogle Scholar
  56. 56.
    Anton J, Nebel J, Song H et al (2016) The effect of sodium on the structure-activity relationships of cobalt-modified Cu/ZnO/Al2O3 catalysts applied in the hydrogenation of carbon monoxide to higher alcohols. J Catal 335:175–186.  https://doi.org/10.1016/j.jcat.2015.12.016 CrossRefGoogle Scholar
  57. 57.
    Schön A, Dacquin JP, Granger P, Dujardin C (2018) Non stoichiometric La1-yFeO3perovskite-based catalysts as alternative to commercial three-way-catalysts?—Impact of Cu and Rh doping. Appl Catal B Environ 223:167–176.  https://doi.org/10.1016/j.apcatb.2017.06.026 CrossRefGoogle Scholar
  58. 58.
    Zhang R, Alamdari H, Kaliaguine S (2006) Fe-based perovskites substituted by copper and palladium for NO + CO reaction. J Catal 242:241–253.  https://doi.org/10.1016/j.jcat.2006.05.033 CrossRefGoogle Scholar
  59. 59.
    Ba À (2019) The effect of the structure and oxygen defects on the simultaneous removal of NO x and soot. New J Chem 43(10):4196–4204.  https://doi.org/10.1039/c8nj04233k CrossRefGoogle Scholar
  60. 60.
    Chen L, Liu G, Feng N et al (2019) Applied surface science effect of calcination temperature on structural properties and catalytic soot combustion activity of MnO x/wire-mesh monoliths. Appl Surf Sci 467–468:1088–1103.  https://doi.org/10.1016/j.apsusc.2018.10.223 CrossRefGoogle Scholar
  61. 61.
    Xin Q, Papavasilou A, Boukos N et al (2018) Preparation of CuO/SBA-15 catalyst by the modified ammonia driven deposition precipitation method with a high thermal stability and an efficient automotive CO and hydrocarbons conversion. Appl Catal B Environ 223:103–115.  https://doi.org/10.1016/j.apcatb.2017.03.071 CrossRefGoogle Scholar
  62. 62.
    Glisenti A, Pacella M, Guiotto M et al (2016) Largely Cu-doped LaCo1-xCuxO3 perovskites for TWC: toward new PGM-free catalysts. Appl Catal B Environ 180:94–105.  https://doi.org/10.1016/j.apcatb.2015.06.017 CrossRefGoogle Scholar
  63. 63.
    Tien Thao N, Son LT (2016) Production of cobalt-copper from partial reduction of La(Co, Cu)O3perovskites for CO hydrogenation. J Sci Adv Mater Devices 1:337–342.  https://doi.org/10.1016/j.jsamd.2016.07.011 CrossRefGoogle Scholar
  64. 64.
    Albaladejo-Fuentes V, López-Suárez FE, Sánchez-Adsuar MS, Illán-Gómez MJ (2014) BaTi1-xCuxO3perovskites: the effect of copper content in the properties and in the NOx storage capacity. Appl Catal A Gen 488:189–199.  https://doi.org/10.1016/j.apcata.2014.09.032 CrossRefGoogle Scholar
  65. 65.
    Pacella M, Garbujo A, Fabro J et al (2018) PGM-free CuO/LaCoO3nanocomposites: new opportunities for TWC application. Appl Catal B Environ 227:446–458.  https://doi.org/10.1016/j.apcatb.2018.01.053 CrossRefGoogle Scholar
  66. 66.
    Su C, McGinn PJ (2013) The effect of Ca2 + and Al3 + additions on the stability of potassium disilicate glass as a soot oxidation catalyst. Appl Catal B Environ 138–139:70–78.  https://doi.org/10.1016/j.apcatb.2013.02.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hari Prasad Uppara
    • 1
  • Harshini Dasari
    • 1
    Email author
  • Sunit Kumar Singh
    • 2
  • Nitin K. Labhsetwar
    • 2
  • M. S. Murari
    • 3
  1. 1.Department of Chemical EngineeringManipal Institute of Technology, Manipal Academy of Higher EducationManipalIndia
  2. 2.Energy and Resource Management DivisionNEERINagpurIndia
  3. 3.DST-PURSE ProgramMangalore UniversityMangalagangotriIndia

Personalised recommendations