Advertisement

Effect of Glycine Addition on Physicochemical and Catalytic Properties of Mn, Mn–La and Mn–Ce Monolithic Catalysts Prepared by Solution Combustion Synthesis

  • Nadezhda V. ShikinaEmail author
  • Svetlana A. YashnikEmail author
  • Anna A. Gavrilova
  • Arkadiy V. Ishchenko
  • Larisa S. Dovlitova
  • Sergey R. Khairulin
  • Zinfer R. Ismagilov
Article
  • 12 Downloads

Abstract

Catalysts containing Mn, Mn–La and Mn–Ce oxides supported on ceramic honeycomb monoliths were prepared by excess-wet impregnation and solution combustion synthesis (SCS). In SCS, glycine was used as a fuel additive with variable concentration (fuel lean and fuel rich conditions). The catalysts were studied by BET, XRD, HRTEM, H2-TPR, and differential dissolution. Properties of the catalysts in the deep oxidation of butane were investigated. The best activity and stability were observed for the catalysts prepared by SCS under fuel rich conditions. Under these conditions, the active component is formed as highly dispersed particles of manganese oxides in the composition of simple and mixed oxides that are located in subsurface layers of the support. On the contrary, manganese oxides that are formed upon thermal treatment of the impregnation catalyst are located mostly in the bulk of the support. Reducing conditions of the SCS reaction lead to the formation of simple and mixed oxides where manganese is mostly in Mn3+ and Mn2+ oxidation states. The presence of reduced manganese species in the subsurface layers of support, which are accessible to reactants, provides high efficiency of SCS catalysts in the oxidation of butane.

Graphic Abstract

Keywords

Manganese oxide catalysts Honeycomb monolith Solution combustion synthesis Butane oxidation 

Notes

Acknowledgements

The study was financially supported by the Russian Foundation for Basic Research and Government of the Novosibirsk Region (Project No. 17-43-540747_p-a, 19-43-540-017_p-a). The authors are grateful to researchers from the Boreskov Institute of Catalysis SB RAS V.A. Ushakov, M.S. Melgunov, and G.S. Litvak for their assistance with physicochemical studies.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Moulijn JA, Kreutzer MT, Nijhuis TA, Kapteijn F (2011) Adv Catal 54:249–327Google Scholar
  2. 2.
    Keav S, Matam SK, Ferri D, Weidenkaff A (2014) Catalysts 4:226–255CrossRefGoogle Scholar
  3. 3.
    Forzatti P, Ballardini D, Sighicelli L (1998) Catal Today 41:87–94CrossRefGoogle Scholar
  4. 4.
    Pratt AS, Cairns JA (1977) Platin Metals Rev 21:74–83Google Scholar
  5. 5.
    Ismagilov ZR, Shkrabina RA, Arendarskii DA, Shikina NV (1998) Kinet Catal 39:600–602Google Scholar
  6. 6.
    Perez-Cadenas AF, Kapteijn F, Moulijn JA, Maldonado-Hodar FJ, Carrasco-Marın F, Moreno-Castilla C (2006) Carbon 44:2463–2468.  https://doi.org/10.1016/j.carbon.2006.05.006 CrossRefGoogle Scholar
  7. 7.
    Yashnik SA, Denisov SP, Danchenko NM, Ismagilov ZR (2016) Appl Catal B 185:322–336.  https://doi.org/10.1016/j.apcatb.2015.12.017 CrossRefGoogle Scholar
  8. 8.
    Yashnik SA, Ismagilov ZR, Porsin AV, Denisov SP, Danchenko NM (2007) Top Catal 42–43:465–469.  https://doi.org/10.1007/s11244-007-0226-7 CrossRefGoogle Scholar
  9. 9.
    Euzen P, Le Gal J-H, Rebours B, Martin G (1999) Catal Today 47:19–27CrossRefGoogle Scholar
  10. 10.
    Augustin M, Fenske D, Bardenhagen I, Westphal A, Knipper M, Plaggenborg T, Kolny-Olesiak J, Parisi J (2015) Bailstein. J Nanotechnol 6:47–59Google Scholar
  11. 11.
    Wu Z, Tang N, Xiao L, Liu Y, Wang H (2010) J Colloid Interface Sci 352:143–148.  https://doi.org/10.1016/j.jcis.2010.08.031 CrossRefGoogle Scholar
  12. 12.
    Pozan GS (2012) J Hazard Mater 221–222:124–130.  https://doi.org/10.1016/j.jhazmat.2012.04.022 CrossRefGoogle Scholar
  13. 13.
    Xu H, Yan N, Qu Z, Liu W, Mei J, Huang W, Zhao S (2017) Environ Sci Technol 51:8879–8892CrossRefGoogle Scholar
  14. 14.
    Kim SC, Shim WG (2010) Appl Catal B 98:180–185.  https://doi.org/10.1016/j.apcatb.2010.05.027 CrossRefGoogle Scholar
  15. 15.
    Atribak I, Bueno-Loopez A, Garcia-Garcia A, Navarro P, Frias D, Montes M (2010) Appl Catal B 93(3–4):267–273CrossRefGoogle Scholar
  16. 16.
    Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han YF (2008) Catal Today 131:477–482.  https://doi.org/10.1016/j.cattod.2007.10.061 CrossRefGoogle Scholar
  17. 17.
    Wang X, Liu Y, Zhang Y, Zhang T, Chang H, Zhang Y, Jiang L (2018) Appl Catal B 229:52–62CrossRefGoogle Scholar
  18. 18.
    Xie Y, Yu Y, Gong X, Guo Y, Guo Y, Wang Y, Lu G (2015) Cryst Eng Commun 17:3005–3014.  https://doi.org/10.1039/c5ce00058k CrossRefGoogle Scholar
  19. 19.
    Chang Y, McCarty JG (1996) Catal Today 30:163–170CrossRefGoogle Scholar
  20. 20.
    Tsyrulnikov PG, Salnikov VS, Drozdov VA, Stuken SA, Bubnov AV, Grigorov EI, Kalinkin AV, Zaikovskii VI (1991) Kinet Catal 32:387–394Google Scholar
  21. 21.
    Tsyrulnikov PG, Tsybulya SV, Kryukova GN, Boronin AI, Koscheev SV, Starostina TG, Bubnov AV, Kudrya EN (2002) J Mol Catal A 179:213–220CrossRefGoogle Scholar
  22. 22.
    Popova NM, Dosumov KD, Zheksenbaeva ZT, Komashko LV (2006) Grigor’eva VP, Sass AS, Salakhova RKh. Kinet Catal 47:907–916CrossRefGoogle Scholar
  23. 23.
    Sui Z-J, Vradman L, Reizner I, Landau ML, Herskowitz M (2011) Catal Comm 12:1437–1441.  https://doi.org/10.1016/j.catcom.2011.06.001 CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Sun Y, Niu X, Yuan F, Fu H (2010) Catal Lett 135:152–158.  https://doi.org/10.1007/s10562-009-0034-8 CrossRefGoogle Scholar
  25. 25.
    Picasso G, Gutiérrez M, Pina MP, Herguido J (2007) Chem Eng J 126:119–130.  https://doi.org/10.1016/j.cej.2006.09.005 CrossRefGoogle Scholar
  26. 26.
    Colman-Lerner E, Peluso MA, Sambeth J, Thomas H (2016) J Rare Earths 34:675–682.  https://doi.org/10.1016/S1002-0721(16)60078-9 CrossRefGoogle Scholar
  27. 27.
    Cuo Zh, Deng Y, Li W, Peng Sh, Zhao F, Liu H (2018) Appl Surf Sci 456:594–601.  https://doi.org/10.1016/j.apsusc.2018.06.207 CrossRefGoogle Scholar
  28. 28.
    Yi H, Huang Y, Tang X, Zhao Sh, Gao F, Xie X, Wang J, Yang Zh (2018) Ceram Int 44:15472–15477.  https://doi.org/10.1016/j.ceramint.2018.05.203 CrossRefGoogle Scholar
  29. 29.
    Zagaynov IV, Naumkin AV, Grigoriev YV (2018) Appl Catal B 236:171–175.  https://doi.org/10.1016/j.apcatb.2018.05.027 CrossRefGoogle Scholar
  30. 30.
    Ciambellia P, Palma V, Tikhov SF, Sadykov VA, Isupova LA, Lisic L (1999) Catal Today 47:199–207CrossRefGoogle Scholar
  31. 31.
    Anil C, Madras G (2016) J Mol Catal A 424:106–114.  https://doi.org/10.1016/j.molcata.2016.08.024 CrossRefGoogle Scholar
  32. 32.
    Li D, Shen G, Tang W, Liu H, Chen Y (2014) Particuology 14:71–75.  https://doi.org/10.1016/j.partic.2013.06.010 CrossRefGoogle Scholar
  33. 33.
    Zeng JL, Liu XL, Wan J, Lv HL, Zhu TY (2015) J Mol Catal A 408:221–227.  https://doi.org/10.1016/j.molcata.2015.07.024 CrossRefGoogle Scholar
  34. 34.
    Yodsa-nga A, Millanar JM, Neramittagapong A, Khemthong P, Wantala K (2015) Surf Coat Technol 271:217–224.  https://doi.org/10.1016/j.surfcoat.2014.12.025 CrossRefGoogle Scholar
  35. 35.
    Ke Y, Lai S-Y (2014) Microporous Mesoporous Mater 198:256–262.  https://doi.org/10.1016/j.micromeso.2014.07.054 CrossRefGoogle Scholar
  36. 36.
    Venkataswamy P, Jampaiah D, Lin F, Alxneit I, Reddy BM (2015) Appl Surf Sci 349:299–309.  https://doi.org/10.1016/j.apsusc.2015.04.220 CrossRefGoogle Scholar
  37. 37.
    Trovarelli A, Boaro M, Rocchini E, De Leitenburg C, Dolcetti G (2001) J Alloys Compd 323:584–591CrossRefGoogle Scholar
  38. 38.
    Nijhuis TA, Beers AW, Vergunst T, Hoek I, Kapteijn F, Moulijn JA (2001) Catal Rev 43(4):345–380.  https://doi.org/10.1081/CR-120001807 CrossRefGoogle Scholar
  39. 39.
    Mukasyan AS, Epstein P, Dinka P (2007) Proc Combust Inst 31:1789–1795CrossRefGoogle Scholar
  40. 40.
    Aruna ST, Mukasyan AS (2008) Curr Opin Solid State Mater Sci 12:44–50.  https://doi.org/10.1016/j.cossms.2008.12.002 CrossRefGoogle Scholar
  41. 41.
    Nersisyan HH, Lee JH, Ding J, Kim KS, Manukyan KV, Mukasyan AS (2017) Prog Energy Combust Sci 63:79–118CrossRefGoogle Scholar
  42. 42.
    Deganello F (2017) Mater Today 4:5507–5516Google Scholar
  43. 43.
    Gonzalez-Cortes SL, Imbert FE (2013) Appl Catal A 452:117–131.  https://doi.org/10.1016/j.apcata.2012.11.024 CrossRefGoogle Scholar
  44. 44.
    Wen W, Wu J-M (2014) RSC Adv 4:58090–58100.  https://doi.org/10.1039/C4RA10145F CrossRefGoogle Scholar
  45. 45.
    Alves AK, Bergmann CP, Berutti FA (2013) Novel synthesis and characterization of nanostructured materials. Chapter 2. Combustion synthesis. Springer, Berlin, pp 11–22Google Scholar
  46. 46.
    Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Chem Rev 116:14493–14586.  https://doi.org/10.1021/acs.chemrev.6b00279 CrossRefGoogle Scholar
  47. 47.
    Zavyalova UF, Tretyakov VF, Burdeinaya TN, Lunin VV, Shitova NB, Ryzhova ND, Shmakov AN, Nizovskii AI, Tsyrulnikov PG (2005) Kinet Catal 46:752–757CrossRefGoogle Scholar
  48. 48.
    Dinka P, Mukasyan AS (2005) J Phys Chem B 109:21627–21633.  https://doi.org/10.1021/jp054486n CrossRefGoogle Scholar
  49. 49.
    Sharma S, Hegde MS (2006) Catal Lett 112:69–75.  https://doi.org/10.1007/s10562-006-0166-z CrossRefGoogle Scholar
  50. 50.
    Mukasyan AS, Dinka P (2007) Intern J Self-Prop High-Temp Synth 16:23–35CrossRefGoogle Scholar
  51. 51.
    Zavyalova UF, Barbashova PS, Lermontov AS, Shitova NB, Tretyakov VF, Burdeinaya TN, Lunin VV, Drozdov VA, Yashnik SA, Ismagilov ZR, Tsyrulnikov PG (2007) Kinet Catal 48:162–167.  https://doi.org/10.1134/S0023158407010211 CrossRefGoogle Scholar
  52. 52.
    Manukyan KV, Cross A, Roslyakov S, Rouvimov S, Rogachev AS, Wolf EE, Mukasyan AS (2013) J Phys Chem C 117:24417–24427.  https://doi.org/10.1021/jp408260m CrossRefGoogle Scholar
  53. 53.
    Civera A, Pavese M, Saracco G, Specchia V (2003) Catal Today 83:199–211.  https://doi.org/10.1016/S0920-5861(03)00220-7 CrossRefGoogle Scholar
  54. 54.
    Najjar H, Lamonier J-F, Mentre O, Giraudon J-M, Batis H (2011) Appl Catal B 106:149–159.  https://doi.org/10.1016/j.apcatb.2011.05.019 Google Scholar
  55. 55.
    Deorsola FA, Andreoli S, Armandi M, Bonelli B, Pirone R (2016) Appl Catal A 522:120–129.  https://doi.org/10.1016/j.apcata.2016.05.002 CrossRefGoogle Scholar
  56. 56.
    Dhal GC, Dey S, Mohan D, Prasad R (2017) Mater Today 4:10489–10493Google Scholar
  57. 57.
    Malakhov VV (2008) Vasil’eva IG. Russ Chem Rev 77:370–392.  https://doi.org/10.1070/RC2008v077n04ABEH003737 CrossRefGoogle Scholar
  58. 58.
    Wang X, Qin M, Fang F, Jia B, Wu H, Qu X, Volinsky AA (2017) J Alloys Compd 719:288–295.  https://doi.org/10.1016/j.jallcom.2017.05.187 CrossRefGoogle Scholar
  59. 59.
    El-Shobaky GA, El-Shobaky HG, Badawy AAA, Fahmy YM (2011) Appl Catal A 409–410:234–238.  https://doi.org/10.1016/j.apcata.2011.10.008 CrossRefGoogle Scholar
  60. 60.
    Lu H, Zhou Y, Huang H, Zhang B, Chen Y (2011) J Rare Earths 29:855–860.  https://doi.org/10.1016/S1002-0721(10)60555-8 CrossRefGoogle Scholar
  61. 61.
    Kan J, Deng L, Li B, Huang Q, Zhu S, Shen S, Chen Y (2017) Appl Catal A 530:21–29.  https://doi.org/10.1016/j.apcata.2016.11.013 CrossRefGoogle Scholar
  62. 62.
    Zhang C, Wang C, Gil S, Boreave A, Retailleau L, Guo Y, Valverde JL, Giroir-Fendler A (2017) Appl Catal B 201:552–560.  https://doi.org/10.1016/j.apcatb.2016.08.038 CrossRefGoogle Scholar
  63. 63.
    Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreiini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) J Catal 150:94–104CrossRefGoogle Scholar
  64. 64.
    Ivanova AS, Slavinskaya EM, Mokrinskii VV, Polukhina IA, Tsybulya SV, Prosvirin IP, Bukhtiyarov VI, Rogov VA, Zaikovskii VI, Noskov AS (2004) J Catal 221:213–224.  https://doi.org/10.1016/j.jcat.2003.06.001 CrossRefGoogle Scholar
  65. 65.
    Ferrandon M, Carno J, Jaras S, Bjornbom E (1999) Appl Catal A Gen 180:141–151CrossRefGoogle Scholar
  66. 66.
    Strohmeier BR, Hercules DM (1984) J Phys Chem 88:4922–4929.  https://doi.org/10.1021/j150665a026 CrossRefGoogle Scholar
  67. 67.
    Aboukaïs A, Abi-Aad E, Taouk B (2013) Mater Chem Phys 142:564–571.  https://doi.org/10.1016/j.matchemphys.2013.07.053 CrossRefGoogle Scholar
  68. 68.
    Yashnik SA, Ishchenko AV, Dovlitova LS, Ismagilov ZR (2017) Top Catal 60:52–72.  https://doi.org/10.1007/s11244-016-0722-8 CrossRefGoogle Scholar
  69. 69.
    Yashnik SA, Chesalov YA, Ishchenko AV, Kaichev VV, Ismagilov ZR (2017) Appl Catal B 204:89–106.  https://doi.org/10.1016/j.apcatb.2016.11.018 CrossRefGoogle Scholar
  70. 70.
    Gandia LM, Vicente MA, Gil A (2000) Appl Catal A Gen 196:281–292CrossRefGoogle Scholar
  71. 71.
    Fierro JLG, Tascon JMD, Gonzalez Tejuca L (1994) J Catal 89:209–216CrossRefGoogle Scholar
  72. 72.
    Rode EYa (1952) Oxygen compounds of manganese. USSR Academy of Sciences, Moscow, p 245 (in Russian) Google Scholar
  73. 73.
    Lever ABP (1984) Inorganic electron spectroscopy, vol 2. Elsevier, Hoboken, p 493Google Scholar
  74. 74.
    Parida KM, Dash SS, Singha S (2008) Appl Catal A 351:59–67.  https://doi.org/10.1016/j.apcata.2008.08.027 CrossRefGoogle Scholar
  75. 75.
    Kijlstra WS, Poels EK, Bliek A, Weckhuysen BM, Schoonheydt RA (1997) J Phys Chem B 101:309–316.  https://doi.org/10.1021/jp962343i CrossRefGoogle Scholar
  76. 76.
    Wan H, Li D, Dai Y, Hu Y, Liu B, Dong L (2010) J Mol Catal A: Chem 332:32–44.  https://doi.org/10.1016/j.molcata.2010.08.016 CrossRefGoogle Scholar
  77. 77.
    Ismagilov IZ, Matus EV, Kuznetsov VV, Kerzhentsev MA, Yashnik SA, Larina TV, Prosvirin IP, Navarro RM, Fierro JLG, Gerritsen G, Abbenhuis HCL, Ismagilov ZR (2016) Eurasian Chem-Technol J 18:93–110CrossRefGoogle Scholar
  78. 78.
    Velu S, Shah N, Jyothi TM, Sivasanker S (1999) Microporous Mesoporous Mater 33:61–75CrossRefGoogle Scholar
  79. 79.
    Piumetti M, Fino D, Russo N (2015) Appl Catal B 163:277–287.  https://doi.org/10.1016/j.apcatb.2014.08.012 CrossRefGoogle Scholar
  80. 80.
    Ferrandon M, Carno J, Jaras S, Bjornbom E (1999) Appl Catal A Gen 180:153–161CrossRefGoogle Scholar
  81. 81.
    Yashnik SA, Kuznetsov VV, Ismagilov ZR, Ushakov VV, Danchenko NM, Denisov SP (2004) Top Catal 30(31):293–298.  https://doi.org/10.1023/B:TOCA.0000029765.54179.c9 CrossRefGoogle Scholar
  82. 82.
    Zhang X, Deng Y-D, Tian P, Shang H, Xu J, Han Y-F (2016) Appl Catal B 191:179–191CrossRefGoogle Scholar
  83. 83.
    Cellier C, Ruaux V, Lahousse C, Grange P, Gaigneaux EM (2006) Catal Today 117:350–355CrossRefGoogle Scholar
  84. 84.
    Liu P, He H, Wei G, Liu D, Liang X, Chen T, Zhu J, Zhu R (2017) Microporous Mesoporous Mater 239:101–110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nadezhda V. Shikina
    • 1
    Email author
  • Svetlana A. Yashnik
    • 1
    Email author
  • Anna A. Gavrilova
    • 1
  • Arkadiy V. Ishchenko
    • 1
  • Larisa S. Dovlitova
    • 1
  • Sergey R. Khairulin
    • 1
  • Zinfer R. Ismagilov
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  2. 2.Institute of Coal Chemistry and Chemical Materials ScienceFederal Research Center of Coal and Coal Chemistry SB RASKemerovoRussia

Personalised recommendations