Advertisement

Amino Acid Amide based Ionic Liquid as an Efficient Organo-Catalyst for Solvent-free Knoevenagel Condensation at Room Temperature

  • Pralhad A. Burate
  • Balasaheb R. Javle
  • Pranjal H. Desale
  • Anil K. KinageEmail author
Article
  • 13 Downloads

Abstract

Ionic liquids of amino acid amide were synthesized and used as an efficient catalyst for solvent-free Knoevenagel condensation. Synthesized ionic liquids are an environmentally benign, inexpensive, metal free and plays the dual role of solvent as well as an efficient catalyst for Knoevenagel condensation. A wide range of aliphatic, aromatic and heteroaromatic aldehydes easily undergo condensation with malononitrile and ethyl cyanoacetate. The reaction proceeds at room temperature without using any organic solvent and is very fast with good to excellent yield. Additionally, the catalyst is easily separable and recyclable without loss of activity.

Graphic Abstract

Keywords

Ionic liquid Amino acid amide Knoevenagel condensation Solvent-free Acrylonitrile Cyanoacrylate 

Notes

Acknowledgements

PAB and BRJ acknowledge to CSIR, New Delhi, for Research Fellowship.

Supplementary material

10562_2019_2840_MOESM1_ESM.docx (10.7 mb)
Supplementary material 1 (DOCX 10915 kb)

References

  1. 1.
    Jones G (1967) Org React 15:204–599Google Scholar
  2. 2.
    Freeman F (1980) Chem Rev 80:329–350CrossRefGoogle Scholar
  3. 3.
    Tietze LF (1996) Chem Rev 96:115–136CrossRefGoogle Scholar
  4. 4.
    Kim I, Kim SG, Choi J, Lee GH (2008) Tetrahedron 64:664–671CrossRefGoogle Scholar
  5. 5.
    Siddique ZN, Khan K (2014) ACS Sustain Chem Eng 2:1187–1194CrossRefGoogle Scholar
  6. 6.
    Pandey K, Rangan K, Kumar A (2018) J Org Chem 83:8026–8035CrossRefGoogle Scholar
  7. 7.
    Chavan HV, Bandgar BP (2013) ACS Sustain Chem Eng 1:929–936CrossRefGoogle Scholar
  8. 8.
    Weclawski MK, Meiling TT, Leniak A, Cywinski PJ, Gryko DT (2015) Org Lett 17:4252–4255CrossRefGoogle Scholar
  9. 9.
    Riveira MJ, Marcarino MO, La-Venia A (2018) Org Lett 20:4000–4004CrossRefGoogle Scholar
  10. 10.
    Chang M-Y, Chen H-Y, Chen Y-H (2017) J Org Chem 82:12631–12639CrossRefGoogle Scholar
  11. 11.
    Sonawane YA, Phadtare SB, Borse BN, Jagtap AR, Shankarling GS (2010) Org Lett 12(7):1456–1459CrossRefGoogle Scholar
  12. 12.
    Devi I, Bhuyan PJ (2004) Tetrahedron Lett 45:8625–8627CrossRefGoogle Scholar
  13. 13.
    Lu J, Toy PH (2011) Synlett 12:1723–1726Google Scholar
  14. 14.
    Tanaka K, Toda F (2000) Chem Rev 100:1025–1074CrossRefGoogle Scholar
  15. 15.
    Welton T (1999) Chem Rev 99:2071–2083CrossRefGoogle Scholar
  16. 16.
    Lei Z, Chen B, Koo Y-M, MacFarlane DR (2017) Chem Rev 117:6633–6635CrossRefGoogle Scholar
  17. 17.
    Amarasekara AS (2016) Chem Rev 116:6133–6183CrossRefGoogle Scholar
  18. 18.
    Azov VA, Egorova KS, Seitkalieva MM, Kashin AS, Ananikov VP (2018) Chem Soc Rev 47:1250–1284CrossRefGoogle Scholar
  19. 19.
    Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Chem Soc Rev 40:1383–1403CrossRefGoogle Scholar
  20. 20.
    Lv S, Li Y, Yao T, Yu X, Zhang C, Hai L, Wu Y (2018) Org Lett 20:4994–4997CrossRefGoogle Scholar
  21. 21.
    Chen J, Xie F, Li X, Chen L (2018) Green Chem 20:4169–4200CrossRefGoogle Scholar
  22. 22.
    Wang R, Twamley B, Shreeve JM (2006) J Org Chem 71:426–429CrossRefGoogle Scholar
  23. 23.
    Guo H-M, Cun L-F, Gong L-Z, Mi A-Q, Jiang Y-Z (2005) Chem Commun 11:1450–1452CrossRefGoogle Scholar
  24. 24.
    Alvim HGO, Correa JR, Assumpcao JAF, da Silva WA, Rodrigues MO, de Macedo JL, Fioramonte M, Gozzo FC, Gatto CC, Neto BAD (2018) J Org Chem 83:4044–4053CrossRefGoogle Scholar
  25. 25.
    Weng J, Wang C, Li H, Wang Y (2006) Green Chem 8:96–99CrossRefGoogle Scholar
  26. 26.
    Grobeheilmann J, Bandomir J, Kragl U (2015) Chem Eur J 21:18957–18960CrossRefGoogle Scholar
  27. 27.
    Feng L-C, Sun Y-W, Tang W-J, Xu L-J, Lam K-L, Zhou Z, Chan ASC (2010) Green Chem 12:949–952CrossRefGoogle Scholar
  28. 28.
    Taheri A, Lai B, Cheng C, Gu Y (2015) Green Chem 17:812–816CrossRefGoogle Scholar
  29. 29.
    Morrison DW, Forbes DC, Davis JH (2001) Tetrahedron Lett 42:6053–6055CrossRefGoogle Scholar
  30. 30.
    Harjani JR, Nara SJ, Salunkhe MM (2002) Tetrahedron Lett 43:1127–1130CrossRefGoogle Scholar
  31. 31.
    Tahmassebi D, Wilson LJA, Kieser JM (2009) Synth Commun 39:2605–2613CrossRefGoogle Scholar
  32. 32.
    Ranu BC, Jana R (2006) Eur J Org Chem 16:3767–3770CrossRefGoogle Scholar
  33. 33.
    Santamarta F, Verdia P, Tojo E (2008) Catal Commun 9:1779–1781Google Scholar
  34. 34.
    Hu X, Ngwa C, Zheng Q (2016) Curr Org Synth 13:101–110CrossRefGoogle Scholar
  35. 35.
    Xin X, Guo X, Duan H, Lin Y, Sun H (2007) Catal Commun 8:115–117CrossRefGoogle Scholar
  36. 36.
    Mulla SAR, Sudalai A, Pathan MY, Siddique SA, Inamdar SM, Chavan SS, Reddy RS (2012) RSC Adv 2:3525–3529CrossRefGoogle Scholar
  37. 37.
    Zhao S, Wang X, Zhang L (2013) RSC Adv 3:11691–11696CrossRefGoogle Scholar
  38. 38.
    Ying A, Liang H, Zheng R, Ge C, Jiang H, Wu C (2011) Res Chem Intermed 37:579–585CrossRefGoogle Scholar
  39. 39.
    Zhu A, Bai S, Jin W, Liu R, Li L, Zhao Y, Wang J (2014) RSC Adv 4:36031–36035CrossRefGoogle Scholar
  40. 40.
    Fang D-W, Tong J, Guan W, Wang H, Yang J-Z (2010) J Phys Chem B 114:13808–13814CrossRefGoogle Scholar
  41. 41.
    Tang S, Baker GA, Zhao H (2012) Chem Soc Rev 41:4030–4066CrossRefGoogle Scholar
  42. 42.
    Xu H, Pan L, Fang X, Liu B, Zhang W, Lu M, Xu Y, Ding T, Chang H (2017) Tetrahedron Lett 58:2360–2365CrossRefGoogle Scholar
  43. 43.
    Xu D-Z, Liu Y, Shi S, Wang Y (2010) Green Chem 12:514–517CrossRefGoogle Scholar
  44. 44.
    Ouyang F, Zhou Y, Li Z-M, Hu N, Tao D-J (2014) Korean J Chem Eng 31:1377–1383CrossRefGoogle Scholar
  45. 45.
    Chen F-F, Huang K, Zhou Y, Tian Z-Q, Zhu X, Tao D-J, Jiang D, Dai S (2016) Angew Chem Int Ed 55:7166–7170CrossRefGoogle Scholar
  46. 46.
    Chen F-F, Huang K, Fan J-P, Tao D-J (2018) AIChE J 64:632–639CrossRefGoogle Scholar
  47. 47.
    del Hierro I, Perez Y, Fajardo M (2018) Mol Catal 450:112–120CrossRefGoogle Scholar
  48. 48.
    Ossowicz P, Rozwadowski Z, Gano M, Janus E (2016) Pol J Chem Technol 18(1):90–95CrossRefGoogle Scholar
  49. 49.
    Javle BR, Kinage AK (2018) Chem Sel 3:2623–2625Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pralhad A. Burate
    • 1
    • 2
  • Balasaheb R. Javle
    • 1
    • 2
  • Pranjal H. Desale
    • 1
  • Anil K. Kinage
    • 1
    • 2
    Email author
  1. 1.Chemical Engineering & Process Development Division, CSIR-National Chemical LaboratoryPuneIndia
  2. 2.Academy of Scientific & Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations