Advertisement

Carbon-Supported Pt and Pt–Ir Nanowires for Methanol Electro-Oxidation in Acidic Media

  • Jamylle Yanka Cruz Ribeiro
  • Edmundo Sebadelhe Valério Neto
  • Giancarlo Richard Salazar-Banda
  • Katlin Ivon Barrios EguiluzEmail author
Article
  • 28 Downloads

Abstract

Direct methanol fuel cells are promising electrochemical energy conversion devices. But, more efficient and stable and less expensive catalysts are still required. Here, we successfully synthesized Pt/C and Pt0.5–Ir0.5/C, Pt0.6–Ir0.4/C, Pt0.7–Ir0.3/C, and Pt0.8–Ir0.2/C nanowires by the chemical reduction of the metallic precursors by formic acid and tested them towards methanol electro-oxidation in acidic media. Neither surfactants nor templates were used during the syntheses. The nanowires catalysts were compared with a commercial state-of-art catalyst aiming the observation of the properties improvements derived from both alloying Pt with Ir and morphology change from nanoparticles to nanowires. Well-defined and slightly agglomerated over the carbon nanowires (diameters and lengths of approximately 5 and 20 nm, respectively) were obtained, the fact that is ascribed to the 40 wt% metal loading. In addition, accelerated degradation tests showed that Pt0.6–Ir0.4/C, Pt0.7–Ir0.3/C and Pt0.8–Ir0.2/C catalysts are more stable than commercial Pt/C. All synthesized nanowires catalysts were more active towards methanol electro-oxidation than the commercial Pt/C. The Pt0.5–Ir0.5/C sample shows Pt mass activities 7 times that of commercial Pt/C. However, the Pt0.8–Ir0.2/C catalyst presented the best specific activity (6 times that of commercial Pt/C), have the highest currents in the derivative voltammetry and the oxidation potential shifts negatively 100 mV in comparison with the commercial Pt/C catalyst. Hence, the nanowires developed in this study are indicated as potential promising catalysts and can be applied successfully as direct methanol fuel cell anodes.

Graphic Abstract

Keywords

Chemical reduction method Methanol electro-oxidation Catalyst stability Direct methanol fuel cell Bifunctional mechanism 

Notes

Acknowledgments

The authors would like to thank the CNPq (Grant Nos. 407274/2013-8, 400443/2013-9, 474261/2013-1, 304419/2015-0, and 310282/2013-6), to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Grant: 001), to FAPITEC/SE from Brazil, for financial support and scholarships. Moreover, we thank Profs. Ronaldo Santos Silva and Euler Araújo dos Santos from the Federal University of Sergipe and to Haoliang Huang from the University of Southampton.

Supplementary material

10562_2019_2839_MOESM1_ESM.docx (559 kb)
Supplementary material 1 (DOCX 558 kb)

References

  1. 1.
    Andújar JM, Segura F (2009) Renew Sustain Energy Rev 13:2309–2322CrossRefGoogle Scholar
  2. 2.
    Alcaide F, Cabot PL, Brillas E (2006) J Power Sources 153:47–60CrossRefGoogle Scholar
  3. 3.
    Hamnett A (1997) Catal Today 38:445–457CrossRefGoogle Scholar
  4. 4.
    Yi Q, Chen A, Huang W, Zhang J, Liu X, Xu G, Zhou Z (2007) Electrochem Commun 9:1513–1518CrossRefGoogle Scholar
  5. 5.
    Bresciani F, Rabissi C, Zago M, Gazdzicki P, Schulze M, Guétaz L, Escribano S, Bonde JL, Marchesi R, Casalegno A (2016) J Power Sources 306:49–61CrossRefGoogle Scholar
  6. 6.
    Gong L, Yang Z, Li K, Ge J, Liu C, Xing W (2018) J Energy Chem 27:1618–1628CrossRefGoogle Scholar
  7. 7.
    El Sawy EN, Molero HM, Birss VI (2014) Electrochim Acta 117:202–210CrossRefGoogle Scholar
  8. 8.
    Demirci UB (2007) J Power Sources 173:11–18CrossRefGoogle Scholar
  9. 9.
    Tian ZQ, Jiang SP, Liu Z, Li L (2007) Electrochem Commun 9:1613–1618CrossRefGoogle Scholar
  10. 10.
    Davies JC, Bonde J, Logadóttir Á, Nørskov JK, Chorkendorff I (2005) Fuel Cells 5:429–435CrossRefGoogle Scholar
  11. 11.
    Zhou W-P, Li M, Koenigsmann C, Ma C, Wong SS, Adzic RR (2011) Electrochim Acta 56:9824–9830CrossRefGoogle Scholar
  12. 12.
    Karan HI, Sasaki K, Kuttiyiel K, Farberow CA, Mavrikakis M, Adzic RR (2012) ACS Catal 2:817–824CrossRefGoogle Scholar
  13. 13.
    Formo E, Peng Z, Lee E, Lu X, Yang H, Xia Y (2008) J Phys Chem C 112:9970–9975CrossRefGoogle Scholar
  14. 14.
    Freitas RG, Antunes EP, Pereira EC (2009) Electrochim Acta 54:1999–2003CrossRefGoogle Scholar
  15. 15.
    Assumpcão MHMT, Silva SG, Souza RFB, Buzzo GS, Spinacé EV, Neto AO, Silva JCM (2014) J Hydrog Energy 39:5148–5152CrossRefGoogle Scholar
  16. 16.
    Toledo-Antonio JA, Ángeles-Chávez C, Cortés-Jácome MA, Cuauhtémoc-López I, López-Salinas E, Pérez-Luna M, Torres-Ferrat G (2012) Appl Catal A 437–438:155–156CrossRefGoogle Scholar
  17. 17.
    Taylor AK, Perez DS, Zhang X, Pilapil K, Engelhard MH, Gates BD, Rider DA (2017) J Mater Chem A 5:21514–21527CrossRefGoogle Scholar
  18. 18.
    Sun S, Zhang G, Geng D, Chen Y, Li R, Cai M, Sun X (2011) Angew Chem Int Ed 50:422–426CrossRefGoogle Scholar
  19. 19.
    Wang S, Jiang SP, Wang X, Guo J (2011) Electrochim Acta 56:1563–1569CrossRefGoogle Scholar
  20. 20.
    López-Suárez FE, Perez-Cadenas M, Bueno-López A, Carvalho-Filho CT, Eguiluz KIB, Salazar-Banda GR (2015) J Appl Electrochem 45:1057–1068CrossRefGoogle Scholar
  21. 21.
    Valério Neto ES, Gomes MA, Salazar-Banda GR, Eguiluz KIB (2018) Int J Hydrog Energy 43:178–188CrossRefGoogle Scholar
  22. 22.
    Silva LSR, López-Suárez FE, Perez-Cadenas M, Santos SF, da Costa LP, Eguiluz KIB, Salazar-Banda GR (2016) Appl Catal B 198:38–48CrossRefGoogle Scholar
  23. 23.
    Almeida GRO, Sussuchi EM, de Meneses CT, Salazar-Banda GR, Eguiluz KIB (2017) Int J Electrochem Sci 12:7502–7517CrossRefGoogle Scholar
  24. 24.
    Calderón JC, García G, Calvillo L, Rodríguez JL, Lázaro MJ, Pastor E (2015) Appl Catal B 165:676–686CrossRefGoogle Scholar
  25. 25.
    Montero MA, Fernández JL, de Chialvo MRG, Chialvo AC (2013) J Phys Chem C 117:20575–25269CrossRefGoogle Scholar
  26. 26.
    Da Silva FRP, Silva-Junior LC, Camara GA, Giz MJ (2019) J Braz Chem Soc, in pressGoogle Scholar
  27. 27.
    Puthiyapura VK, Mamlouk M, Pasupathi S, Pollet BG, Scott K (2014) J Power Sources 269:451–460CrossRefGoogle Scholar
  28. 28.
    Wang R, Wei B, Wang H, Ji S, Key J, Zhang X, Lei Z (2011) Ionics 17:595–601CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Li M, Wu Z, Li W (2011) Nanotechnology 22:015602CrossRefGoogle Scholar
  30. 30.
    Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ (1994) J Phys Chem 98:617–625CrossRefGoogle Scholar
  31. 31.
    Han Y, Ouyang Y, Xie Z, Chen J, Chang F, Yu G (2016) J Mater Sci Technol 32:639–645CrossRefGoogle Scholar
  32. 32.
    Silva CD, Morais LH, Gonçalves R, Matos R, Souza GLC, Freitas RG, Pereira EC (2018) Electrochim Acta 280:197–205CrossRefGoogle Scholar
  33. 33.
    Sun S, Zhang G, Geng D, Chen Y, Banis MN, Li R, Cai M, Sun X (2010) Chem A 16:829–835Google Scholar
  34. 34.
    Mahmoud MA, Tabor CE, El-Sayed MA, Ding Y, Wang ZL (2008) J Am Chem Soc 130:4590–4591CrossRefGoogle Scholar
  35. 35.
    Thilaga S, Durga S, Selvarani V, Kiruthika S, Muthukumaran B (2018) Ionics 24:1721–1731CrossRefGoogle Scholar
  36. 36.
    Antoniassi RM, Silva JCM, Lopes T, Oliveira Neto A, Spinacé EV (2017) Int J Hydrogen Energy 42:28786–28796CrossRefGoogle Scholar
  37. 37.
    Maillard F, Eikerling M, Cherstiouk OV, Schreier S, Savinova E, Stimming U (2004) Faraday Discuss 125:357–377CrossRefGoogle Scholar
  38. 38.
    Ciapina EG, Santos SF, Gonzalez ER (2018) J Electroanal Chem 815:47–60CrossRefGoogle Scholar
  39. 39.
    Sun S, Jaouen F, Dodelet J-P (2008) Adv Mater 20:3900–3904CrossRefGoogle Scholar
  40. 40.
    El Sawy EN, Birss VI (2017) J Electrochem Soc 164:F1572–F1579CrossRefGoogle Scholar
  41. 41.
    Holt-Hindle P, Yi Q, Wu G, Koczkur K, Chen A (2008) J Electrochem Soc 155:K5–K9CrossRefGoogle Scholar
  42. 42.
    Salazar-Banda GR, Suffredini HB, Calegaro ML, Tanimoto ST, Avaca LA (2006) J Power Sources 162:9–20CrossRefGoogle Scholar
  43. 43.
    Velázquez-Palenzuela A, Centellas F, Garrido JA, Arias C, Rodríguez RM, Brillas E, Cabot P-L (2011) J Power Sources 196:3503–3512CrossRefGoogle Scholar
  44. 44.
    Christensen PA, Hammett A, Troughton GL (1993) J Electroanal Chem 362:207–2018CrossRefGoogle Scholar
  45. 45.
    Gojkovic S Lj, Vidakovic TR (2000) Electrochim Acta 47:633–642CrossRefGoogle Scholar
  46. 46.
    Tapan NA, Prakash J (2005) Turkish J Eng Environ Sci 29:95–103Google Scholar
  47. 47.
    Eguiluz KIB, Salazar-Banda GR, Miwa D, Machado SAS, Avaca LA (2008) J Power Sources 179:42–49CrossRefGoogle Scholar
  48. 48.
    Murthy A, Manthiram A (2012) J Phys Chem C 116:3827–3832CrossRefGoogle Scholar
  49. 49.
    Ruiz-Camacho B, Santoyo HHR, Medina-Flores JM, Álvarez-Martínez O (2014) Electrochim Acta 120:344–349CrossRefGoogle Scholar
  50. 50.
    Kua J, Goddard WA (1999) J Am Chem Soc 121:10928–10941CrossRefGoogle Scholar
  51. 51.
    Iwasita T (2002) Electrochim Acta 47:3663–3674CrossRefGoogle Scholar
  52. 52.
    Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) J Electroanal Chem 571:273–282CrossRefGoogle Scholar
  53. 53.
    Lee K-S, Park I-S, Cho Y-H, Jung D-S, Jung N, Park H-Y, Sung Y-E (2008) J Catal 258:143–152CrossRefGoogle Scholar
  54. 54.
    Chung DY, Lee KJ, Sung YE (2016) J Phys Chem C 120:9028–9035CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jamylle Yanka Cruz Ribeiro
    • 1
  • Edmundo Sebadelhe Valério Neto
    • 1
    • 2
  • Giancarlo Richard Salazar-Banda
    • 1
    • 2
  • Katlin Ivon Barrios Eguiluz
    • 1
    • 2
    Email author
  1. 1.Laboratory of Electrochemistry and NanotechnologyInstitute of Technology and ResearchAracajuBrazil
  2. 2.Process Engineering Graduate ProgramTiradentes UniversityAracajuBrazil

Personalised recommendations