Isoprene Synthesis Using MIL-101(Cr) Encapsulated Silicotungstic Acid Catalyst

  • Nattaporn Songsiri
  • Garry L. RempelEmail author
  • Pattarapan PrasassarakichEmail author


A single-stage synthesis of isoprene from methyl tert-butyl ether (MTBE) and formalin in an organic-aqueous two-phase system was studied by using solid acid catalysts, i.e., USY zeolite, silicotungstic acid (STA) 25 wt% encapsulated in MIL-101(Cr) (STA25@MIL-101), and STA 25 wt% encapsulated in SBA-15 (STA25@SBA-15). From preliminary experiments, the catalytic activity decreased in the order: STA25@MIL-101 > SBA25@SBA-15 > USY zeolite. This suggested that isoprene formation was favored with high surface area and high acid strength of catalyst. Then, the porous hybrid material of a MIL-101 metal organic framework and STA was studied in more detail. MIL-101 was not efficient for isoprene synthesis at mild reaction condition. On increasing STA loading, which was well correlated with the Brӧnsted acid property, the catalyst activity increased in the order: MIL-101 < STA30@MIL-101 < STA60@MIL-101. The high acidity catalyst gave high isoprene yield at optimum low temperature and low side reaction products. For the STA30@MIL-101 and STA60@MIL-101 catalysts, the isoprene yield could be sustained at 18.5% (0.4% SD) and 30.0% (1.5% SD), respectively over three recycling runs. It is apparent that no STA leaching from the low STA loading catalyst occurred.

Graphic Abstract


Isoprene MTBE Silicotungstic acid Heteropolyacids Prins reaction MIL-101 



This study was financially and technically supported by Bangkok Synthetics Co., Ltd. We are grateful to Dr. Steffen Hausdorf, Technische Universität Dresden, for the permission of the use of MIL-101(Cr) building block as presented in the graphical abstract.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2837_MOESM1_ESM.docx (943 kb)
Supplementary material 1 (DOCX 943 kb)


  1. 1.
    Weitz HM, Loser E (2000) Isoprene. Ullmann’s encyclopedia of industrial chemistry. 2. Wiley, New York, pp 849–875Google Scholar
  2. 2.
    Ezinkwo GO, Tretjakov VF, Talyshinky RM et al (2013) Overview of the catalytic production of isoprene from different raw materials; prospects of isoprene production from bio-ethanol. Catal Sustain Energy 1:100–111Google Scholar
  3. 3.
    Ai M (1987) The formation of isoprene by means of a vapor-phase prins reaction between formaldehyde and isobutene. J Catal 106(1):280–286Google Scholar
  4. 4.
    Ivanova I, Sushkevich VL, Kolyagin YG et al (2013) Catalysis by coke deposits: synthesis of isoprene over solid catalysts. Angew Chem Int Edit 125:13199–13202Google Scholar
  5. 5.
    Dumitriu E, Trong On D, Kaliaguine S (1997) Isoprene by prins condensation over acidic molecular sieves. J Catal 170(1):150–160Google Scholar
  6. 6.
    Dumitriu E, Hulea V, Fechete I et al (1999) Prins condensation of isobutylene and formaldehyde over Fe-silicates of MFI structure. Appl Catal A 181(1):15–28Google Scholar
  7. 7.
    Sushkevich VL, Ordomsky VV, Ivanova II (2012) Synthesis of Isoprene from Formaldehyde and Isobutene over Phosphate Catalysts. Appl Catal A 441–442:21–29Google Scholar
  8. 8.
    Yu X, Zhu W, Zhai S et al (2016) Prins condensation for the synthesis of isoprene from isobutylene and formaldehyde over sillica-supported H3SiW12O40 catalysts. Reac Kinet Mech Cat. 117:761–771Google Scholar
  9. 9.
    Sushkevich VL, Ordomsky VV, Ivanova II (2016) Isoprene synthesis from formaldehyde and isobutene over Keggin-type heteropolyacids supported on silica. Catal Sci Technol 6(16):6354–6364Google Scholar
  10. 10.
    Qi Y, Cui L, Li Y et al (2018) Development a facile way to restore reactivity of deactivated phosphate catalysts for prins reaction with the assistance of carbon deposition. Catal Commun 106:11–15Google Scholar
  11. 11.
    Vavilov DI, Akhmedyanova RA, Liakumovich AG et al (2010) Synthesis of isoprene from 1,3-dioxolane and isobutylene. Russ J Appl Chem. 83(9):1598–1601Google Scholar
  12. 12.
    Burkin KE, Akhmedyanova RA (2011) Novel ecological and energy saving method of single-stage synthesis of isoprene. Chem Sustain Dev 19:531–535Google Scholar
  13. 13.
    Ninagawa Y, Yamada O, Renge T, et al (1986) Inventors; Kuraray Co. Ltd., assignee. Process for Producing Isoprene. US patent US Patent 4593145Google Scholar
  14. 14.
    Wang S-S, Yang G-Y (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115(11):4893–4962Google Scholar
  15. 15.
    Ivan VK (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198Google Scholar
  16. 16.
    Kim JK, Choi JH, Song JH et al (2012) Etherification of n-butanol to di-n-butyl ether over HnXW12O40 (X = Co2+, B3+, Si4+, and P5+) Keggin heteropolyacid catalysts. Catal Commun 27:5–8Google Scholar
  17. 17.
    Tundo P, Romanelli GP, Vázquez PG et al (2010) Multiphase oxidation of alcohols and sulfides with hydrogen peroxide catalyzed by heteropolyacids. Catal Commun 11(15):1181–1184Google Scholar
  18. 18.
    Sun Y, Wang H, Shen J et al (2009) Highly effective synthesis of methyl glycolate with heteropolyacids as catalysts. Catal Commun 10(5):678–681Google Scholar
  19. 19.
    Songsiri N, Rempel GL, Prasassarakich P (2016) Liquid-phase synthesis of isoprene from methyl tert-butyl ether and formalin using Keggin-type heteropolyacids. Ind Eng Chem Res 55(33):8933–8940Google Scholar
  20. 20.
    Songsiri N, Rempel GL, Prasassarakich P (2017) Liquid-phase synthesis of isoprene from MTBE and formalin using cesium salts of silicotungstic acid. J Mol Catal 439(Supplement C):41–49Google Scholar
  21. 21.
    Zhou Y, Chen G, Long Z et al (2014) Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations. RSC Adv 4(79):42092–42113Google Scholar
  22. 22.
    Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 34(11):2366–2388Google Scholar
  23. 23.
    Yang H, Li J, Wang L et al (2013) Exceptional activity for direct synthesis of phenol from benzene over PMoV@MOF with O2. Catal Commun 35:101–104Google Scholar
  24. 24.
    Wang W, Li Y, Zhang R et al (2011) Metal-organic framework as a host for synthesis of nanoscale Co3O4 as an active catalyst for CO oxidation. Catal Commun 12(10):875–879Google Scholar
  25. 25.
    Wen M, Kuwahara Y, Mori K et al (2016) Enhancement of catalytic activity over AuPd nanoparticles loaded metal organic framework under visible light irradiation. Top Catal 59(19):1765–1771Google Scholar
  26. 26.
    Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042Google Scholar
  27. 27.
    Leus K, Bogaerts T, De Decker J et al (2016) Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks. Microporous Mesoporous Mater. 226(Supplement C):110–116Google Scholar
  28. 28.
    Qadir N, Said SAM, Bahaidarah HM (2015) Structural stability of metal organic frameworks in aqueous media—controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous Mesoporous Mater 201:61–90Google Scholar
  29. 29.
    Buragohain A, Couck S, Van Der Voort P et al (2016) Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X = –F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials. J Solid State Chem. 238(Supplement C):195–202Google Scholar
  30. 30.
    Wee LH, Bonino F, Lamberti C et al (2014) Cr-MIL-101 encapsulated keggin phosphotungstic acid as active nanomaterial for catalysing the alcoholysis of styrene oxide. Green Chem 16(3):1351–1357Google Scholar
  31. 31.
    Deng Q, Nie G, Pan L et al (2015) Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel. Green Chem 17(8):4473–4481Google Scholar
  32. 32.
    Zang Y, Shi J, Zhao X et al (2013) Highly stable chromium(III) terephthalate metal organic framework (MIL-101) encapsulated 12-tungstophosphoric heteropolyacid as a water-tolerant solid catalyst for hydrolysis and esterification. Reac Kinet Mech Cat 109(1):77–89Google Scholar
  33. 33.
    Juan-Alcañiz J, Ramos-Fernandez EV, Lafont U et al (2010) Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. J Catal 269(1):229–241Google Scholar
  34. 34.
    Sheng X, Kong J, Zhou Y et al (2014) Direct synthesis, characterization and catalytic application of SBA-15 mesoporous silica with heteropolyacid incorporated into their framework. Microporous Mesoporous Mater 187:7–13Google Scholar
  35. 35.
    Rafiee E, Joshaghani M, Eavani S et al (2008) A revision for the synthesis of β-enaminones in solvent free conditions: efficacy of different supported heteropoly acids as active and reusable catalysts. Green Chem 10(9):982–989Google Scholar
  36. 36.
    Kurti L, Czako B (2005) Prins reaction. Strategic applications of named reactions in organic synthesis. Elsevier, Amsterdam, p 364Google Scholar
  37. 37.
    Adam JM, Clapp TV (1986) Reactions of the conjugated dienes butadiene and isoprene alone and with methanol over ion-exchanged montmorillonites. Clay Clay Miner. 34:287–294Google Scholar
  38. 38.
    Rocchiccioli-Deltcheff C, Fournier M, Franck R et al (1983) Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg Chem 22(2):207–216Google Scholar
  39. 39.
    Treacy MMJ, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Maaz S, Rose M, Palkovits R (2016) Systematic investigation of the pore structure and surface properties of SBA-15 by water vapor physisorption. Microporous Mesoporous Mater 220:183–187Google Scholar
  41. 41.
    Canivet J, Bonnefoy J, Daniel C et al (2014) Structure-property relationships of water adsorption in metal-organic frameworks. New J Chem 38(7):3102–3111Google Scholar
  42. 42.
    Liu L, Wang B, Du Y et al (2015) Supported H4SiW12O40/Al2O3 solid acid catalysts for dehydration of glycerol to acrolein: evolution of catalyst structure and performance with calcination temperature. Appl Catal A 489:32–41Google Scholar
  43. 43.
    Qiu J, Wang G, Zhang Y et al (2015) Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil. Fuel 147:195–202Google Scholar
  44. 44.
    Bromberg L, Diao Y, Wu H et al (2012) Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties. Chem Mater 24(9):1664–1675Google Scholar
  45. 45.
    Zhang Y, Degirmenci V, Li C et al (2011) Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural. Chemsuschem 4(1):59–64Google Scholar
  46. 46.
    Maksimchuk NV, Kovalenko KA, Arzumanov SS et al (2010) Hybrid polyoxotungstate/MIL-101 materials: synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. Inorg Chem 49(6):2920–2930Google Scholar
  47. 47.
    Canioni R, Roch-Marchal C, Sécheresse F et al (2011) Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J Mater Chem 21(4):1226–1233Google Scholar
  48. 48.
    Ribeiro S, Barbosa ADS, Gomes AC et al (2013) Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Process Technol 116:350–357Google Scholar
  49. 49.
    Khder AERS, Hassan HMA, El-Shall MS (2014) Metal-organic frameworks with high tungstophosphoric acid loading as heterogeneous acid catalysts. Appl Catal A 487:110–118Google Scholar
  50. 50.
    Kong Y, Cheng X, An H et al (2018) Preparation and characterization of H4SiW12O40@MIL-100(Fe) and its catalytic performance for synthesis of 4,4′-MDA. Chin J Chem Eng 26(2):330–336Google Scholar
  51. 51.
    Bardin BB, Bordawekar SV, Neurock M et al (1998) Acidity of Keggin-type heteropolycompounds evaluated by catalytic probe reactions, sorption microcalorimetry, and density functional quantum chemical calculations. J Phys Chem B 102(52):10817–10825Google Scholar
  52. 52.
    Janik MJ, Davis RJ, Neurock M (2004) A first principles analysis of the location and affinity of protons in the secondary structure of phosphotungstic acid. J Phys Chem B 108(33):12292–12300Google Scholar
  53. 53.
    Ganapathy S, Fournier M, Paul JF et al (2002) Location of protons in anhydrous Keggin heteropolyacids H3PMo12O40 and H3PW12O40 by 1H{31P}/31P{1H} REDOR NMR and DFT quantum chemical calculations. J Am Chem Soc 124(26):7821–7828Google Scholar
  54. 54.
    Herbst A, Khutia A, Janiak C (2014) Brønsted instead of lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorg Chem 53(14):7319–7333Google Scholar
  55. 55.
    Berry FJ, Derrick GR, Mortimer M (2014) Identification and characterisation of stable phases of silicotungstic acid, H4SiW12O40·nH2O. Polyhedron 68:17–22Google Scholar
  56. 56.
    Jürgensen A, Moffat JB (1995) The stability of 12-molybdosilicic, 12-tungstosilicic, 12-molybdophosphoric and 12-tungstophosphoric acids in aqueous solution at various pH. Catal Lett 34(1):237–244Google Scholar
  57. 57.
    Akgül G, Kruse A (2013) Hydrothermal disproportionation of formaldehyde at subcritical conditions. J Supercrit Fluids. 73(Supplement C):43–50Google Scholar
  58. 58.
    Bajorek JJS, Battaglia R, Pratt G et al (1974) A modified prins reaction applicable to conjugated dienes. J Chem Soc 1:1243–1245Google Scholar
  59. 59.
    Peel R, Sutherland JK (1974) An alternative synthesis of the corey prostaglandin aldehyde. J Chem Soc 4:151–153Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Technology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada
  3. 3.Center of Excellence on Petrochemical and Materials TechnologyChulalongkorn UniversityBangkokThailand

Personalised recommendations