Silver Nanoparticles Decorated by Amino Groups on the Periphery of Litchi-Like P(MMA-AA-DVB)@Fe3O4 Microspheres for the Catalytic Reduction of Methyl Orange

  • Xiangkun Jia
  • Yong Ma
  • Yin Liu
  • Yufei Wang
  • Qiuyu ZhangEmail author


Litchi-like core–shell magnetic composite microspheres decorated on their surface with silver (Ag) nanoparticles (P(MMA-AA-DVB)@Fe3O4@Ag), were synthesized through a thermal decomposition method and carefully characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. The prepared composite microspheres were used as a catalyst for the reduction of methyl orange in the presence of sodium borohydride (NaBH4). The study revealed that methyl orange was completely reduced within 10 min and there was no remarkable change in the catalytic activity of the composite particles after five catalytic reaction cycles. In addition, the prepared catalyst was easily recycled using a magnet. Such excellent catalytic activity was attributed to the small size and great uniform distribution of Ag nanoparticles on the surface of the composite particles. The method reported here offers an effective approach for the fast catalytic reduction of the methyl orange dye, and also provides a novel idea for the rapid catalysis of other dyes.

Graphical Abstract

Litchi-like core–shell magnetic composite microspheres decorated on their surface with silver nanoparticles (P(MMA-AA-DVB)@Fe3O4@Ag), were synthesized for the catalytic reduction of methyl orange, and through simply adjusting the dosage of polymer particles, the coating amount of Fe3O4 nanoparticles on the polymer surface could be effectively controlled.


Magnetic Silver Litchi-like Methyl orange Recycle 



The authors are grateful for the financial support provided by the State Key Program of National Natural Science of China (Grant No.51433008), the National Natural Science Foundation of China (Grant No.21704084), the International Cooperation and Exchanges NSFC (Grant No. 51711530233) and the Fundamental Research Funds for the Central Universities (Grant No. 3102017jc01001).

Compliance with Ethical Standards

Conflict of interest

The authors declared that they have no conflict of interest.

Supplementary material

10562_2019_2823_MOESM1_ESM.docx (713 kb)
Supplementary material 1 (DOCX 712 kb)


  1. 1.
    Gao CY, Kim MW, Bae DH et al (2017) Polymer 125:21CrossRefGoogle Scholar
  2. 2.
    Jian X, Wu B, Wei Y et al (2016) ACS Appl Mater Interfaces 8:6101CrossRefGoogle Scholar
  3. 3.
    Ma Y, Hou C, Zhang H et al (2017) J Mater Chem A 5:14041CrossRefGoogle Scholar
  4. 4.
    Wang Y, Zhou J, Zhang B et al (2017) Chem Eng J 327:932CrossRefGoogle Scholar
  5. 5.
    Xie L, Lan F, Li W et al (2014) Colloid Surf B 123:413CrossRefGoogle Scholar
  6. 6.
    Xie L, Ma S, Yang Q et al (2014) RSC Adv 4:1055CrossRefGoogle Scholar
  7. 7.
    Li C, Chang C, Chen J (2015) Sens Actuators, B 210:46CrossRefGoogle Scholar
  8. 8.
    Huang W, Xie H, Tian Y et al (2018) ACS Appl Mater Interfaces 10:20073CrossRefGoogle Scholar
  9. 9.
    Yao D, Peng N, Zheng Y (2018) Compos Sci Technol 167:234CrossRefGoogle Scholar
  10. 10.
    Hong HJ, Jeong HS, Kim BG et al (2016) Chemosphere 165:231CrossRefGoogle Scholar
  11. 11.
    Zhang B, Huyan Y, Wang J et al (2018) J Alloys Compd 735:1986CrossRefGoogle Scholar
  12. 12.
    Ma M, Yang Y, Li W et al (2019) J Mater Sci 54:323CrossRefGoogle Scholar
  13. 13.
    Ma Y, Ma M, Yin X et al (2018) Polymer 156:128CrossRefGoogle Scholar
  14. 14.
    Zhang B, Chen J, Wang J et al (2018) J Chem Eng Data 63:3913CrossRefGoogle Scholar
  15. 15.
    Jia X, Fan X, Liu Y et al (2015) RSC Adv 5:60691CrossRefGoogle Scholar
  16. 16.
    Tian Q, Wang Q, Yao KX et al (2014) Small 10:1063CrossRefGoogle Scholar
  17. 17.
    Huo X, Li W, Zhu J et al (2015) J Phys Chem C 119:25786CrossRefGoogle Scholar
  18. 18.
    He W, Frueh J, Shao J et al (2016) Colloid Surf A 511:73CrossRefGoogle Scholar
  19. 19.
    Zhao L, Gao M, Yue W et al (2015) ACS Appl Mater Interfaces 7:9709CrossRefGoogle Scholar
  20. 20.
    Gao CY, Piao SH, Choi HJ (2017) Colloid Polym Sci 295:959CrossRefGoogle Scholar
  21. 21.
    Low LE, Tey BT, Ong BH et al (2017) Carbohyd Polym 155:391CrossRefGoogle Scholar
  22. 22.
    Sharafat MK, Ahmad H, Alam MA et al (2016) Rajshahi Univ J Sci Eng 44:67CrossRefGoogle Scholar
  23. 23.
    Guo L, Ye P, Wang J et al (2015) J Hazard Mater 298:28CrossRefGoogle Scholar
  24. 24.
    Zhang B, Huyan Y, Wang J et al (2018) J Am Ceram SocGoogle Scholar
  25. 25.
    Jia X, Ma Y, Liu Y et al (2018) Dalton Trans 47:12893CrossRefGoogle Scholar
  26. 26.
    Wang Y, Zhou J, Wu C et al (2018) J Mater Chem B 6:5860CrossRefGoogle Scholar
  27. 27.
    Li L, Choo ESG, Tang X et al (2010) Acta Mater 58:3825CrossRefGoogle Scholar
  28. 28.
    Atarod M, Nasrollahzadeh M, Mohammad Sajadi S (2016) J Colloid Interface Sci 462:272CrossRefGoogle Scholar
  29. 29.
    Choi Y, Kim H, Moon G et al (2016) ACS Catal 6:821CrossRefGoogle Scholar
  30. 30.
    Zhang B, Li P, Zhang H et al (2016) Chem Eng J 291:287CrossRefGoogle Scholar
  31. 31.
    Gupta N, Singh HP, Sharma RK (2011) J Mol Catal A: Chem 335:248CrossRefGoogle Scholar
  32. 32.
    Guo J, Ma B, Yin A et al (2011) Appl Catal B-Environ 101:580CrossRefGoogle Scholar
  33. 33.
    Esmaeili A, Entezari MH (2016) J Colloid Interface Sci 466:227CrossRefGoogle Scholar
  34. 34.
    Alzahrani SA, Malik MA, Al-Thabaiti SA et al (2018) Appl Nanosci 8:255CrossRefGoogle Scholar
  35. 35.
    Dagle VL, Flake MD, Lemmon TL et al (2018) Appl Catal B Environ 236:576CrossRefGoogle Scholar
  36. 36.
    Kulkarni AA, Bhanage BM (2014) ACS Sustain Chem Eng 2:1007CrossRefGoogle Scholar
  37. 37.
    Chaker H, Chérif-Aouali L, Khaoulani S et al (2016) J Photochem Photobiol, A 318:142CrossRefGoogle Scholar
  38. 38.
    Li J, Liu J, Yang Y et al (2015) J Am Chem Soc 137:7039CrossRefGoogle Scholar
  39. 39.
    Yang SF, Niu CG, Huang DW et al (2017) J Colloid Interface Sci 505:96CrossRefGoogle Scholar
  40. 40.
    Ebadi M, Zarghami Z, Aliabadi M (2015) J Mater Sci 27:1622Google Scholar
  41. 41.
    Ganapathy Selvam G, Sivakumar K (2014) Appl Nanosci 5:617CrossRefGoogle Scholar
  42. 42.
    Wu W, Lei M, Yang S et al (2015) J Mater Chem A 3:3450CrossRefGoogle Scholar
  43. 43.
    Ai L, Zeng C, Wang Q (2011) Catal Commun 14:68CrossRefGoogle Scholar
  44. 44.
    He D, Chen Y, Situ Y et al (2017) Appl Surf Sci 425:862CrossRefGoogle Scholar
  45. 45.
    Suwarnkar MB, Dhabbe RS, Kadam AN et al (2014) Ceram Int 40:5489CrossRefGoogle Scholar
  46. 46.
    Wang F, Li F, Xu M et al (2015) J Mater Chem A 3:5908CrossRefGoogle Scholar
  47. 47.
    Saravanan R, Mansoob Khan M, Gupta VK et al (2015) J Colloid Interface Sci 452:126CrossRefGoogle Scholar
  48. 48.
    Zhao Z, Wang Y, Xu J et al (2015) RSC Adv 5:59297CrossRefGoogle Scholar
  49. 49.
    Yu X, Shang L, Wang D et al (2018) Solid State Sci 80:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiangkun Jia
    • 1
  • Yong Ma
    • 2
  • Yin Liu
    • 1
  • Yufei Wang
    • 1
  • Qiuyu Zhang
    • 1
    Email author
  1. 1.MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Natural and Applied ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.School of Material Science and EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations