Advertisement

As Catalytic as Silver Nanoparticles Anchored to Reduced Graphene Oxide: Fascinating Activity of Imidazolium Based Surface Active Ionic Liquid for Chemical Degradation of Rhodamine B

  • Mudasir Ahmad Rather
  • Sajad Ahmad Bhat
  • Sarwar Ahmad Pandit
  • Fayaz Ahmad Bhat
  • Ghulam Mohammad Rather
  • Mohsin Ahmad BhatEmail author
Article
  • 6 Downloads

Abstract

A kinetic study, first of its kind, regarding the catalytic activity of imidazolium-based surface-active ionic liquid (SAIL) viz. 1-dodecyl-3-methyl imidazolium chloride ([DDMIM][Cl]) toward the reductive degradation of a model cationic dye viz. rhodamine B (RhB) is presented. The catalytic activity of the pre and post micellar concentrations of SAIL [DDMIM][Cl], its conventional analogue surfactant dodecyltrimethylammonium bromide ([DTAB]) and silver (Ag) nano-particles anchored to the reduced graphene oxide (Ag-rGO) toward reductive degradation of RhB was explored. The catalytic activity observed for the [DDMIM][Cl] is much better than that of DTAB and is almost comparable to the activity exhibited by Ag-rGO. The catalytic rate constants (kcat) estimated in presence of pre-micellar concentrations of [DDMIM][Cl] (10 mM), DTAB (12 mM) and in presence of Ag-rGO as catalyst were found to be 11.48 × 10−2 min−1, 3.4 × 10−2 min−1 and 14.35 × 10−2 min−1 respectively. The results clearly establish the fascinating catalytic activity (almost comparable to that exhibited by Ag-rGO) of [DDMIM][Cl] for the reductive degradation of a widely used carcinogenic, mutagenic and toxic organic dye of great environmental concern. The presented results are expected to stimulate intense research activities that may uncover new opportunities toward exploitation of the catalytic activity of aqueous SAIL solutions.

Graphical Abstract

Surface active ionic liquid [DDMIM][Cl] is significantly more active than its conventional analogue DTAB and almost as active as Ag-rGO in facilitating the NaBH4 assisted chemical degradation of rhodamine B (RhB)-one of the most carcinogenic, mutagenic and toxic organic dyes.

Keywords

Rhodamine B Surface active ionic liquid Reductive degradation Catalysis Catalytic rate constant Binding interaction 

Notes

Acknowledgements

MAB thanks Department of Science and Technology, New Delhi, India, for the research Grant No. SR/S1/PC-11/2009 (Science and Engineering Research Board). MAR thanks CSIR for the financial assistance (09/25(0039)/2011-EMR-1). SAB thanks DST for financial assistance under DST INSPIRE Scheme (DST/6712/2013/711) (Science for Equity, Empowerment and Development Division).

Supplementary material

10562_2019_2798_MOESM1_ESM.docx (53 kb)
Supplementary material 1 (DOCX 53 kb)

References

  1. 1.
    Shakir K, Elkafrawy AF, Ghoneimy HF, Elrab-Beheir SG, Refaat M (2010) Water Res 44:1449CrossRefGoogle Scholar
  2. 2.
    AlHamedi FH, Rauf MA, Ashraf SS (2009) Desalination 239:159CrossRefGoogle Scholar
  3. 3.
    Daneshvar N, Behnajady MA, Mohammadi MKA, Dorraji MSS (2008) Desalination 230:16CrossRefGoogle Scholar
  4. 4.
    Sloniec J, Schnurr M, Witte C, Resch-Genger U, Schröder L, Hennig A (2013) Chem Eur J 19:3110CrossRefGoogle Scholar
  5. 5.
    Sackett DL, Wolff J (1987) Anal Biochem 167:228CrossRefGoogle Scholar
  6. 6.
    Kim DS, Park YS (2006) Chem Eng J116:133CrossRefGoogle Scholar
  7. 7.
    Wu JM, Zhang TW (2004) J Photochem Photobiol A 162:171CrossRefGoogle Scholar
  8. 8.
    Das SK, Bhowal J, Das AR, Guha AK (2006) Langmuir 22:7265CrossRefGoogle Scholar
  9. 9.
    Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G (2007) J Am Chem Soc 129:11666CrossRefGoogle Scholar
  10. 10.
    Jaina R, Mathura M, Sikarwara S, Mittal A (2007) J Environ Manage 85:956CrossRefGoogle Scholar
  11. 11.
    Arslan İ, BalcioǧluI A, Bahnemann DW (2000) Dyes Pigments 47:207CrossRefGoogle Scholar
  12. 12.
    Derudi M, Venturini G, Lombardi G, Nano G, Rota R (2007) Eur J Soil Biol 43:297CrossRefGoogle Scholar
  13. 13.
    Chaudhary S, Kaur Y, Umar A, Chaudhary GR (2016) J Mol Liq 224:1294CrossRefGoogle Scholar
  14. 14.
    Nikfar E, Dehghani MH, Mahvi AH, Rastkari N, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) J Mol Liq 213:332CrossRefGoogle Scholar
  15. 15.
    Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2014) Spectrochim Acta A 121:88CrossRefGoogle Scholar
  16. 16.
    Singh HP, Gupta N, Sharma SK, Sharma RK (2013) Colloids Surf A 416:43CrossRefGoogle Scholar
  17. 17.
    Ashraf U, Chat OA, Dar AA (2014) Chemosphere 99:199CrossRefGoogle Scholar
  18. 18.
    Macedoa ER, Boni LD, Misoguti L, Mendonca CR, de-Oliveira HP (2011) Colloids Surf A 392:76CrossRefGoogle Scholar
  19. 19.
    Singh TR, Luwang MN, Srivastava S (2011) React Kinet Mech Catal 104:17CrossRefGoogle Scholar
  20. 20.
    Hassan M, AlAhmadi MD, Mosaid M (2011) Arab J Chem 8:72CrossRefGoogle Scholar
  21. 21.
    Rodriguez A, Graciani MM, Munoz M, Moya ML (2003) Langmuir 19:7206CrossRefGoogle Scholar
  22. 22.
    Rather MA, Bhat SA, Pandit SA, Rather GM, Bhat MA (2017) Electroanalysis 29:1CrossRefGoogle Scholar
  23. 23.
    Rather MA, Rather GM, Pandit SA, Bhat SA, Bhat MA (2015) Talanta 131:55CrossRefGoogle Scholar
  24. 24.
    Rather MA, Rather GM, Pandit SA, Bhat SA, Khan KZ, Bhat MA (2015) J Sol Chem 44:1518CrossRefGoogle Scholar
  25. 25.
    Bharmoria P, Rao KS, Trivedi TJ, Kumar A (2014) J Phys Chem B 118:115CrossRefGoogle Scholar
  26. 26.
    Mahajan S, Sharma R, Mahajan RK (2012) Langmuir 28:17238CrossRefGoogle Scholar
  27. 27.
    Monti D, Egiziano E, Burgalassi S, Chetoni P, Chiappe C, Sanzone A, Tampucci S (2017) Int J Pharm 516:45CrossRefGoogle Scholar
  28. 28.
    Pal A, Yadav A (2016) J Mol Liq 222:471CrossRefGoogle Scholar
  29. 29.
    Bica K, Gӓrtner P, Gritsch PJ, Ressmann AK, Schrӧder C, Zirbs R (2012) Chem Commun 48:5013CrossRefGoogle Scholar
  30. 30.
    Singla P, Singh O, Chabba S, Mahajan RK (2018) J Mol Liq 249:294CrossRefGoogle Scholar
  31. 31.
    Patra N, Mandal B, Ghosh S (2017) Ind Eng Chem Res 56:10044CrossRefGoogle Scholar
  32. 32.
    Bhat SA, Rather MA, Pandit SA, Ingole PP, Bhat MA (2016) J Electroanal Chem 783:280CrossRefGoogle Scholar
  33. 33.
    Bhat SA, Rashid N, Rather MA, Pandit SA, Rather GM, Ingole PP, Bhat MA (2018) ACS Appl Mater Interfaces 10:16376CrossRefGoogle Scholar
  34. 34.
    Bhat MA, Dutta CK, Rather GM (2013) J Mol Liq 181:142CrossRefGoogle Scholar
  35. 35.
    Hallett JP, Welton T (2011) Chem Rev 111:3508CrossRefGoogle Scholar
  36. 36.
    Ao M, Kim D (2013) J Chem Eng Data 58:1529CrossRefGoogle Scholar
  37. 37.
    Galgano PD, El-Seoud OA (2011) J Colloid Interface Sci 361:186CrossRefGoogle Scholar
  38. 38.
    Gu Y, Shi L, Cheng X, Lu F, Zheng L (2013) Langmuir 29:6213CrossRefGoogle Scholar
  39. 39.
    Dar AA, Rather GM, Das AR (2007) J Phys Chem B 111:3122CrossRefGoogle Scholar
  40. 40.
    Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New YorkCrossRefGoogle Scholar
  41. 41.
    Das S, Mondal S, Ghosh S (2013) J Chem Eng Data 58:2586CrossRefGoogle Scholar
  42. 42.
    Tajalli H, Gilania AG, Zakerhamidia MS, Moghadam M (2009) Spectrochim Acta A 72:697CrossRefGoogle Scholar
  43. 43.
    Barka N, Qourzal S, Assabbane A, Nounah A, Ichou YA (2008) J Photochem Photobiol A 195:346CrossRefGoogle Scholar
  44. 44.
    Vinothkannan M, Karthikeyan C, Kumar GG, Kim AR, Yoo DJ (2014) Spectrochim Acta A 136:256CrossRefGoogle Scholar
  45. 45.
    Singh HP, Gupta N, Sharma SK, Sharma RK (2013) Colloids Surf A 416:43CrossRefGoogle Scholar
  46. 46.
    Gohain B, Dutta RK (2008) J Colloid Int Sci 323:395CrossRefGoogle Scholar
  47. 47.
    Khan Z, Bashir O, Khan MN, Khan TA, Al-Thabaiti SA (2017) J Mol Liq 248:1096CrossRefGoogle Scholar
  48. 48.
    Barka N, Qourzal S, Assabbane A, Nounahb A, Ait-Ichou Y (2008) J Photochem Photobiol A 195:346CrossRefGoogle Scholar
  49. 49.
    Hea Z, Suna C, Yanga S, Dinga Y, Hea H, Wang Z (2009) J Hazard Mater 162:1477CrossRefGoogle Scholar
  50. 50.
    Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Mater Lett 91:170CrossRefGoogle Scholar
  51. 51.
    Wu JM, Zhang TW (2004) J Photochem Photobiol A 162:171CrossRefGoogle Scholar
  52. 52.
    Zhao X, Zhu Y (2006) Environ Sci Technol 40:3367CrossRefGoogle Scholar
  53. 53.
    Fu H, Pan C, Yao W, Zhu Y (2005) J Phys Chem B 109:22432CrossRefGoogle Scholar
  54. 54.
    Zhong H, Shaogui Y, Yongming J, Cheng S (2009) J Environ Sci 21:268CrossRefGoogle Scholar
  55. 55.
    Selvin SSP, Kumar AG, Sarala L, Rajaram R, Sathiyan A, Merlin JP, Lydia IS (2018) ACS Sus Chem Eng 6:258CrossRefGoogle Scholar
  56. 56.
    Liu MT-H, Zhang J, Wang B (2017) Pol J Chem Technol 19:30Google Scholar
  57. 57.
    Ali MB, Barras A, Addad A, Sieber D-B, Elhouichet H, Fe´rid M, Szunerits S, Boukherroub R (2017) Phys Chem Chem Phys 19:6569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mudasir Ahmad Rather
    • 1
  • Sajad Ahmad Bhat
    • 1
  • Sarwar Ahmad Pandit
    • 1
  • Fayaz Ahmad Bhat
    • 1
  • Ghulam Mohammad Rather
    • 2
  • Mohsin Ahmad Bhat
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of KashmirSrinagarIndia
  2. 2.Department of ChemistryIslamic University of Science and TechnologyAwantiporaIndia

Personalised recommendations