Influence of ZnO Surface Modification on the Photocatalytic Performance of ZnO/NiO Thin Films

  • Shanmugapriya PeriyannanEmail author
  • Laura Manceriu
  • Ngoc Duy Nguyen
  • Andreas Klein
  • Wolfram Jaegermann
  • Pierre Colson
  • Catherine Henrist
  • Rudi Cloots


Charge carrier separation is considered as a key factor in enhancing the photocatalytic process and can be maximized by mitigating surface recombination. Following this idea, the surface of zinc oxide (ZnO) was modified by thermal treatment and nickel oxide (NiO) deposition. The influence of the ZnO thermal treatment and NiO deposition conditions on the ZnO surface chemistry and heterostructure interface properties were investigated by in situ X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) and correlated to the dye photodegradation efficiency. The XPS analysis confirmed a change of doping of ZnO after thermal treatment, which mainly influenced the developed band bending, and has led to an improved photocatalytic activity. For the same reason, the heterostructures based on the surface cleaned ZnO surface had higher photocatalytic efficiency than the ones based on non-cleaned ZnO. The temperature input during NiO deposition had negligible effect on the heterostructure interface properties. The photocatalytic efficiency did not follow the band bending evolution because of a dominant contribution of charge recombination across the NiO layer as indicated by PL analysis.

Graphical Abstract


Heterogeneous catalysis Catalysis Thin films Methodology and phenomena XPS Microscopy Spectroscopy and general characterisation Photoluminescence ZnO/NiO Surface modification Band bending Photocatalytic activity 



This work was carried out in the framework of EJD-FunMat (European Joint Doctorate for Multifunctional Materials) and has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie Grant Agreement No. 641640.

Compliance with Ethical Standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2781_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4104 kb)


  1. 1.
    Vinodgopal K, Bedja I, Kamat PV (1996) Nanostructured semiconductor films for photo-catalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem Mater 8:2180–2187CrossRefGoogle Scholar
  2. 2.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRefGoogle Scholar
  3. 3.
    Fernandez´-Garcia M, Martinez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104:4063–4104CrossRefGoogle Scholar
  4. 4.
    Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc. Google Scholar
  5. 5.
    Serpone N, Emeline AV (2005) Modelling heterogeneous photocatalysis by metal-oxide nanostructured semiconductor and insulator materials: factors that affect the activity and selectivity of photocatalysts. Res Chem Intermed 31:391–432CrossRefGoogle Scholar
  6. 6.
    Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218CrossRefGoogle Scholar
  7. 7.
    Ameen S, Akhtar MS, Seo HK, Shin HS (2014) Metal oxide semiconductors and their nanocomposites application towards photovoltaic and photocatalytic. Adv Energy Mater. Google Scholar
  8. 8.
    Mondal K, Sharma A (2016) Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process. RSC Adv 6:83589–83612CrossRefGoogle Scholar
  9. 9.
    Bai S, Yin W, Wang L, Li Z, Xiong Y (2016) Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv 6:57446–57463CrossRefGoogle Scholar
  10. 10.
    Meng NKS, Leung MKH, Leung DYC (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425CrossRefGoogle Scholar
  11. 11.
    Bai S, Jiang W, Li Z, Xiong Y (2015) Surface and interface engineering in photocatalysis. ChemNanoMat 1:223–239CrossRefGoogle Scholar
  12. 12.
    Bai S, Jiang J, Zhang Q, Xiong Y (2015) Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev 44:2893–2939CrossRefGoogle Scholar
  13. 13.
    Ali AM, Emanuelsson EAC, Patterson DA (2011) Conventional versus lattice photocatalysed reactions: implications of the lattice oxygen participation in the liquid phase photocatalytic oxidation with nanostructured ZnO thin films on reaction products and mechanism at both 254 nm and 340 nm. Appl Catal B Environ 106(3–4):323–336. CrossRefGoogle Scholar
  14. 14.
    Liu S, Han C, Tang Z-R, Xu Y-J (2016) Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Mater Horiz 3(4):259–364CrossRefGoogle Scholar
  15. 15.
    Wang JLH, Zhang L, Chen Z, Hu J, Li S, Wang Z, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244CrossRefGoogle Scholar
  16. 16.
    Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi (B) Basic Res 244(9):3027–3073CrossRefGoogle Scholar
  17. 17.
    Li J, Zhao F, Zhang L, Zhang M, Jiang H, Li S, Li J (2015) Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity. RSC Adv 5:67610–67616CrossRefGoogle Scholar
  18. 18.
    Ding M, Yang H, Yan T, Wang C, Deng X, Zhang S, Huang J, Shao M, Xijin X (2018) Fabrication of hierarchical ZnO@NiO core–shell heterostructures for improved photocatalytic performance. Nanoscale Res Lett 13:260CrossRefGoogle Scholar
  19. 19.
    Kumar SG, Rao KS (2015) Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv 5:3306–3351CrossRefGoogle Scholar
  20. 20.
    Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448CrossRefGoogle Scholar
  21. 21.
    Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) p-Type semi-conducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci 105(8):2783–2787CrossRefGoogle Scholar
  22. 22.
    Li YR, Wan CY, Chang CT, Tsai WL, Huang YC, Wang KY, Yang PY, Cheng HC (2015) Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure. Vacuum 118:48–54CrossRefGoogle Scholar
  23. 23.
    Echresh A, Chey CO, Shoushtari MZ, Khranovskyy V, Nur O, Willander M (2015) UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J Alloy Compd 632:165–171CrossRefGoogle Scholar
  24. 24.
    Vijayaprasath G, Sakthivel P, Murugan R, Mahalingam T, Ravi G (2016) Deposition and characterization of ZnO/NiO thin films. AIP Conf Proc 1731:080033CrossRefGoogle Scholar
  25. 25.
    Deng R, Yao B, Li YF, Zhao YM, Li BH, Shan CX, Zhang ZZ, Zhao DX, Zhang JY, Shen DZ, Fan XW (2009) X-ray photoelectron spectroscopy measurement of n-ZnO/p-NiO heterostructure valence-band offset. Appl Phys Lett 94(2):022108-1–022108-3CrossRefGoogle Scholar
  26. 26.
    Tian F, Liu Y (2013) Synthesis of p-type NiO/n-type ZnO heterostructure and its enhanced photocatalytic activity. Scr Mater 69(5):417–419CrossRefGoogle Scholar
  27. 27.
    Liu Y, Li G, Mi R, Deng C, Gao P (2014) An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis. Sens Actuators B Chem 191:537–544CrossRefGoogle Scholar
  28. 28.
    Kizler B, Peker SM (2016) Synthesis of TiO2 coated ZnO nanorod arrays and their stability in photocatalytic flow reactors. Thin Solid Films 605:232–242. CrossRefGoogle Scholar
  29. 29.
    Poongodi G, Kumar RM, Jayavel R (2015) Structural, optical and visible light photo-catalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method. Ceram Int 41:4169–4175CrossRefGoogle Scholar
  30. 30.
    Sarma B, Deb SK, Sarma BK (2016) Photoluminescence and photocatalytic activities of Ag/ZnO metal-semiconductor heterostructure. In: Journal of physics: conference series, pp 1–7Google Scholar
  31. 31.
    Pauporte´ T, Rathouský J (2007) Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J Phys Chem C 111:7639–7644CrossRefGoogle Scholar
  32. 32.
    Kaneva N, Ponomareva A, Krasteva L, Dimitrov D, Bojinova A, Papazova K, Suchaneck G, Moshnikov V (2013) Surface and photocatalytic properties of nanostructured ZnO thin films doped with iron. Bul Chem Commun 45(4):635–643Google Scholar
  33. 33.
    Brillson LJ, Lu Y (2011) ZnO Schottky barriers and Ohmic contacts. J Appl Phys 109:121301–121333CrossRefGoogle Scholar
  34. 34.
    Kosmulski M (2009) Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interface Sci 152:14–25CrossRefGoogle Scholar
  35. 35.
    Balachandran S, Swaminathan M (2012) Facile fabrication of heterostructured Bi2O3−ZnO photocatalyst and its enhanced photocatalytic activity. J Phys Chem C 116:26306–26312CrossRefGoogle Scholar
  36. 36.
    Chen H, Wageh S, Al-Ghamdi AA, Wang H, Yu J, Jiang C (2019) Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo red. J Coll and Int Sci 537:736–745CrossRefGoogle Scholar
  37. 37.
    Kakazey M, Vlasova M, Juarez-Arellano EA, Torchynska T, Basiuk VA (2016) Defect states and morphological evolution in mechanically processed ZnO+: X C nanosystems as studied by EPR and photoluminescence spectroscopy. RSC Adv 6:58709–58722CrossRefGoogle Scholar
  38. 38.
    Richters JP, Voss T, Kim DS, Scholz R, Zacharias M (2008) Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires. Nanotechnology 19(305202):1–4Google Scholar
  39. 39.
    Echresh A, Chey CO, Shoushtari MZ, Nur O, Willander M (2014) Tuning the emission of ZnO nanorods based light emitting diodes using Ag doping. J Appl Phys 116:193104-1–193104-8CrossRefGoogle Scholar
  40. 40.
    Vempati S, Mitra J, Dawson P (2012) One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res Lett 7(August):1–10Google Scholar
  41. 41.
    Yang A, Yang Y, Zhang Z, Bao X, Yang R, Li S, Sun L (2013) Photoluminescence and defect evolution of nano-ZnO thin films at low temperature annealing. Sci China Technol Sci 56(1):25–31CrossRefGoogle Scholar
  42. 42.
    Shabnam, Kant CR, Arun P (2010) Controlling the photoluminescence of ZnO: Si nano-composite films by heat-treatment. Mater Res Bull 45:1368–1374CrossRefGoogle Scholar
  43. 43.
    Ha B, Ham H, Lee CJ (2008) Photoluminescence of ZnO nanowires dependent on O2 and Ar annealing. J Phys Chem Solids 69:2453–2456CrossRefGoogle Scholar
  44. 44.
    Rodrigues J, Holz T, Allah RF, Gonzalez D, Ben T, Correia MR, Monteiro T, Costa FM (2015) Effect of N2 and H2 plasma treatments on band edge emission of ZnO microrods. Sci Rep 5:1–9. Google Scholar
  45. 45.
    Urgessa ZN, Botha JR, Eriksson MO, Mbulanga CM, Dobson SR, Tankio Djiokap SR, Karlsson KF, Khranovskyy V, Yakimova R, Holtz PO (2014) Low temperature near band edge recombination dynamics in ZnO nanorods. J Appl Phys 116(12):123506-1 - 123506-10CrossRefGoogle Scholar
  46. 46.
    Zhu Q, Xie C, Li H, Yang C, Zhang S, Zeng D (2014) Selectively enhanced UV and NIR photoluminescence from a degenerate ZnO nanorod array film. J Mater Chem C 2(23):4566–4580CrossRefGoogle Scholar
  47. 47.
    Manjula N, Balu AR, Usharani K, Raja N, Nagarethinam VS (2016) Enhancement in some physical properties of spray deposited CdO:Mn thin films through Zn doping towards optoelectronic applications. Optik 127(16):6400–6406. CrossRefGoogle Scholar
  48. 48.
    Lee HB, Ginting RT, Tan ST, Tan CH, Alshanableh A, Oleiwi HF, Yap CC, Jumali MHH, Yahaya M (2016) Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement. Sci Rep 6:1–11CrossRefGoogle Scholar
  49. 49.
    Drouilly C, Krafft JM, Averseng F, Casale S, Chizallet C, Lecocq V, Vezin H, Lauron-Pernot H, Costentin G (2012) ZnO oxygen vacancies formation and filling followed by in situ PL and in situ EPR. J Phys Chem C 116:21297–21307CrossRefGoogle Scholar
  50. 50.
    Gheisi AR, Neygandhi C, Sternig AK, Carrasco E, Marbach H, Thomele D, Diwald O (2014) O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles. Phys Chem Chem Phys 16:23922–23929CrossRefGoogle Scholar
  51. 51.
    Li M, Xing G, Ah Qune LFN, Xing G, Wu T, Huan CHA, Zhang X, Sum TC (2012) Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps. Phys Chem Chem Phys 14:3075–3082CrossRefGoogle Scholar
  52. 52.
    Lee Y-M, Yang H-W, Huang C-M (2012) Effect of rapid thermal annealing on the structural and electrical properties of solid ZnO/NiO heterojunctions prepared by a chemical solution process. J Phys D Appl Phys 45:225302-1–225302-7Google Scholar
  53. 53.
    Reshchikov MA, Wessels BW (1999) Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities. Phys Rev B 59(20):176–183CrossRefGoogle Scholar
  54. 54.
    Li JM, Wu JJ, Han XX (1998) Theory of interface roughness scattering in quantum wells. Semicond Sci Technol 13:709–713CrossRefGoogle Scholar
  55. 55.
    Kaneva N, Stambolova I, Blaskov V, Dimitriev Y, Vassilev S, Dushkin C (2010) Photocatalytic activity of nanostructured ZnO films prepared by two different methods for the photoinitiated decolorization of malachite green. J Alloy Compd 500:252–258CrossRefGoogle Scholar
  56. 56.
    Cheng Q, Benipal MK, Liu Q, Wang X, Crozier PA, Chan CK, Nemanich RJ (2017) Al2O3 and SiO2 atomic layer deposition layers on ZnO photoanodes and degradation mechanisms. Appl Mater Interfaces 9:16138–16147CrossRefGoogle Scholar
  57. 57.
    Hosseiny S, Wessling M (2011) Ion exchange membranes for vanadium redox flow batteries. In: Advanced membrane science and technology for sustainable energy and environmental applicationsGoogle Scholar
  58. 58.
    Sokol AA, French SA, Bromley ST, Catlow CRA, Van Dam HJ, Sherwood P (2007) Point defects in ZnO. Faraday Discuss 134:267–282CrossRefGoogle Scholar
  59. 59.
    Jaegermann W, Klein A, Mayer T, Thissen A (2008) Photoelectron spectroscopy in materials science and physical chemistry: analysis of composition, chemical bonding and electronic structure of surfaces and interfaces. Bunsen-Magazin 10(4):124–139Google Scholar
  60. 60.
    Siol S, Hellmann JC, Tilley SD, Graetzel M, Morasch J, Deuermeier J, Jaegermann W, Klein A (2016) Band alignment engineering at Cu2O/ZnO heterointerfaces. Appl Mater Interfaces 8:21824–21831CrossRefGoogle Scholar
  61. 61.
    Klein A (2013) Transparent conducting oxides: electronic structure–property relationship from photoelectron spectroscopy with in situ sample preparation. J Am Ceram Soc 96(2):331–345Google Scholar
  62. 62.
    Kraut EA, Grant RW, Waldrop JR, Eowalczyk SP (1980) Precise determination of the valence-band edge in X-ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys Rev Lett 44(24):1620–1623CrossRefGoogle Scholar
  63. 63.
    Shi L, Wang F, Wang Y, Wang D, Zhao B, Zhang L, Zhao D, Shen D (2016) Photoluminescence and photocatalytic properties of rhombohedral CuGaO2 nanoplates. Sci Rep 6:1–10. CrossRefGoogle Scholar
  64. 64.
    Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloy Compd 727:792–820. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shanmugapriya Periyannan
    • 1
    • 2
    Email author
  • Laura Manceriu
    • 1
  • Ngoc Duy Nguyen
    • 3
  • Andreas Klein
    • 2
  • Wolfram Jaegermann
    • 2
  • Pierre Colson
    • 1
  • Catherine Henrist
    • 1
  • Rudi Cloots
    • 1
  1. 1.GREENMAT-LCIS, CESAM Research Unit, Institute of ChemistryUniversite de LiegeLiegeBelgium
  2. 2.Surface Science Division, Institute of Materials ScienceTechnische Universitat DarmstadtDarmstadtGermany
  3. 3.SPIN, CESAM Research Unit, Institute of PhysicsUniversite de LiegeLiegeBelgium

Personalised recommendations