Advertisement

DFT Study of Pyrolysis Gasoline Hydrogenation on Pd(100), Pd(110) and Pd(111) Surfaces

  • Haowen Ma
  • Yang Yang
  • Huixia FengEmail author
  • Daojian ChengEmail author
Article
  • 12 Downloads

Abstract

Pyrolysis gasoline is applied to extract aromatics and to be gasoline blending stock, and its stabilization by catalytic hydrogenation under mild temperature is an important reaction in petrochemical field. Thereinto, styrene hydrogenation was considered as an example for the assessment of the catalysis performance for pyrolysis gasoline hydrogenation. In this work, the adsorption and diffusion of reactants (styrene and H) and the activation energy of styrene hydrogenation on Pd(111), Pd(100), and Pd(110) surfaces are discussed by density functional theory calculations. The adsorption energy of reactants (styrene and H) decreases in the order of Pd(110) > Pd(111) > Pd(100). The activation barriers with feasible intermediate products are investigated and the reaction activity based on the activation barriers follows the order of Pd(111) > Pd(100) > Pd(110). In addition, the diffusion barrier for styrene or H is smaller than the reaction barrier of styrene hydrogenation, indicating the true rate limiting step is the process of hydrogenation rather than the diffusion. Our results provide theoretical guide for the prepared catalyst with feasible surfaces by careful selection of preparation techniques in experiments.

Graphical Abstract

Keywords

Styrene hydrogenation Pd surface DFT 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21822801, 21576008, 91634116) and PetroChina Innovation Foundation (2016D-5007-0505).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Reddy KM, Pokhriyal SK, Ratnasamy P, Sivasanker S (1992) Appl Catal A Gen 83:1CrossRefGoogle Scholar
  2. 2.
    Cheng YM, Chang JR, Wu JC (1986) Appl Catal 24:273CrossRefGoogle Scholar
  3. 3.
    Zhou Z, Cheng Z, Yang D, Zhou X, Yuan WJ (2006) Chem Eng Data 51:972CrossRefGoogle Scholar
  4. 4.
    Nijhuis TA, Dautzenberg FM, Moulijn JA (2003) Chem Eng Sci 58:1113CrossRefGoogle Scholar
  5. 5.
    Zhou ZM, Cheng ZM, Cao YN, Zhang JC, Yang D, Yuan WK (2007) Chem Eng Technol 30:105CrossRefGoogle Scholar
  6. 6.
    Hoffer B, Dickvanlangeveld A, Janssens J, Bonne R, Lok C, Moulijn J (2000) J Catal 192:432CrossRefGoogle Scholar
  7. 7.
    Hoffer BW, Devred F, Kooyman PJ, van Langeveld AD, Bonné RLC, Griffiths C, Lok CM, Moulijn JA (2002) J Catal 209:245CrossRefGoogle Scholar
  8. 8.
    Hoffer BW, Bonné RL, van Langeveld AD, Griffiths C, Lok CM, Moulijn JA (2004) Fuel 83:1CrossRefGoogle Scholar
  9. 9.
    Castano P, Pawelec B, Fierro J, Arandes J, Bilbao J (2007) Fuel 86:2262CrossRefGoogle Scholar
  10. 10.
    Shido T, Lok M, Prins R (1999) Top Catal 8:223CrossRefGoogle Scholar
  11. 11.
    Enache DI, Landon P, Lok CM, Pollington SD, Stitt EH (2005) Ind Eng Chem Res 44:9431CrossRefGoogle Scholar
  12. 12.
    Gaspar AB, dos Santos GR, de Souza Costa R, da Silva MAP (2008) Catal Today 133–135:400CrossRefGoogle Scholar
  13. 13.
    Bin SW, Rong CW, Ray CJ (2000) Ind Eng Chem Res 39:4063CrossRefGoogle Scholar
  14. 14.
    Bin LT, Chuan CT (1995) Ind Eng Chem Res 34:128CrossRefGoogle Scholar
  15. 15.
    Cheng CJ, Chuan CT (1997) Ind Eng Chem Res 36:4126CrossRefGoogle Scholar
  16. 16.
    Deepyaman S, Amitava S, Flora N, Garry R (2007) Chem Eng Sci 62:4544CrossRefGoogle Scholar
  17. 17.
    Choo H, He B, Liew KY, Liu H, Li J (2006) J Mol Catal A Chem 244:217CrossRefGoogle Scholar
  18. 18.
    Gonzalo CR, Maarten KS, Reynier MF, François JJ, Guy BM (2014) J Phys Chem C 118:21483CrossRefGoogle Scholar
  19. 19.
    Ma FF, Ma SH, Jiao ZY, Dai XQ (2016) Appl Surf Sci 384:10CrossRefGoogle Scholar
  20. 20.
    Shi Q, Sun R (2017) Comput Theor Chem 1106:43CrossRefGoogle Scholar
  21. 21.
    Kokalj A, Makino T, Okada M (2017) J Phys Condens Mat 29:194001CrossRefGoogle Scholar
  22. 22.
    Liu N, Wang X, Wan Y (2015) Appl Surf Sci 328:591CrossRefGoogle Scholar
  23. 23.
    Zhou M, Liu B (2017) Ind Eng Chem Res 56:5813CrossRefGoogle Scholar
  24. 24.
    Saeedeh ST, Alberto R, Nora DL (2014) J Phys Chem C 118:26103CrossRefGoogle Scholar
  25. 25.
    Zhang M, Wu X, Yu Y (2018) Appl Surf Sci 436:268CrossRefGoogle Scholar
  26. 26.
    Tafreshi SS, Roldan A, de Leeuw NH (2014) J Phys Chem C 118:26103CrossRefGoogle Scholar
  27. 27.
    Wellington JPW, Tegner BE, Collard J, Kerridge A, Kaltsoyannis N (2018) J Phys Chem C 122:7149CrossRefGoogle Scholar
  28. 28.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  29. 29.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  30. 30.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  32. 32.
    Mohsenzadeh A, Bolton K, Richards T (2014) Surf Sci 627:1CrossRefGoogle Scholar
  33. 33.
    Jørgensen M, Grönbeck H (2016) ACS Catal 6:6730CrossRefGoogle Scholar
  34. 34.
    Haynes WM, Bruno TJ, Lide DR (2015) CRC handbook of chemistry and physics, 95th edn. CRC Press, New YorkGoogle Scholar
  35. 35.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  36. 36.
    Schenter GK, Mills G, Jónsson H (1994) J Chem Phys 101:8964CrossRefGoogle Scholar
  37. 37.
    Mills G, Jónsson H, Schenter GK (1995) Surf Sci 324:305CrossRefGoogle Scholar
  38. 38.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901CrossRefGoogle Scholar
  39. 39.
    Henkelman G, Jónsson H (2000) J Chem Phys 113:9978CrossRefGoogle Scholar
  40. 40.
    Rydberg H, Lundqvist BI, Langreth DC, Dion M (2000) Phys Rev B 62:6997CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Petrochemical Technology, State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Energy Environmental CatalysisBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  3. 3.Lanzhou Petrochemical Research Center of PetroChina, Petrochemical Research InstitutePetroChinaLanzhouChina

Personalised recommendations