Selective Hydrogenation of CO2 to Formic Acid over Alumina-Supported Ru Nanoparticles with Multifunctional Ionic Liquid

  • Prashant Gautam
  • Praveenkumar Ramprakash Upadhyay
  • Vivek SrivastavaEmail author


Ethylene glycol reduction method was used to prepare alumina supported Ru nanoparticles with different concentrations. All the synthesized materials were examined by different analytical techniques like XRD, TEM, EDX, H2-chemisorption, XPS and H2-TPD analysis. The performance of all the well synthesized Ru@Al2O3-x (x = 2–10 Ru wt%) catalysts were tested for CO2 hydrogenation reaction with or without ionic liquid medium. The influence of the physiochemical properties of Ru@Al2O3-x (x = 2–10 Ru wt%) catalysts was clearly observed during the catalysis CO2 hydrogenation reaction. The maximum catalytic activity was recorded with Ru@Al2O3-2 catalyst in [DAMI][CF3CF2CF2CF2SO3] ionic liquid. In this system, ionic liquid was noted as catalyst stabilizer and shifted the chemical equilibrium of CO2 hydrogenation reaction towards formic acid synthesis followed by the formation of intermediate carbonate. The Ru@Al2O3-2 catalyst in [DAMI][CF3CF2CF2CF2SO3] ionic liquid gave the best result in terms of formic acid synthesis and catalyst recycling (8 runs).

Graphical Abstract


Ethylene glycol Alumina Ru metal Formic acid Hydrogenation CO2 gas 


Supplementary material

10562_2019_2773_MOESM1_ESM.docx (292 kb)
Supplementary material 1 (DOCX 292 kb)


  1. 1.
    Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H (2012) Metal nanoparticles as heterogeneous fenton catalysts. Chemsuschem 5:46–64CrossRefGoogle Scholar
  2. 2.
    Kalidindi SB, Jagirdar BR (2012) Nanocatalysis and prospects of green chemistry. Chemsuschem 5:65–75CrossRefGoogle Scholar
  3. 3.
    Fan J, Gao Y (2006) Nanoparticle-supported catalysts and catalytic reactions—a mini-review. J Exp Nanosci 1:457–475CrossRefGoogle Scholar
  4. 4.
    Munnik P, de Jongh PE, de Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chem Rev 115:6687–6718CrossRefGoogle Scholar
  5. 5.
    Lambert S, Cellier C, Grange P et al (2004) Synthesis of Pd/SiO2, Ag/SiO2, and Cu/SiO2 cogelled xerogel catalysts: study of metal dispersion and catalytic activity. J Catal 221:335–346CrossRefGoogle Scholar
  6. 6.
    Mokrane T, Boudjahem A-G, Bettahar M (2016) Benzene hydrogenation over alumina-supported nickel nanoparticles prepared by polyol method. RSC Adv 6:59858–59864CrossRefGoogle Scholar
  7. 7.
    Boudjahem A-G, Redjel A, Mokrane T (2012) Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation. J Ind Eng Chem 18(303–308):8Google Scholar
  8. 8.
    Hu H, Xin JH, Hu H et al (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions—a review. J Mater Chem A 3:11157–11182CrossRefGoogle Scholar
  9. 9.
    Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079CrossRefGoogle Scholar
  10. 10.
    Boudjahem A-G, Mokrane T, Redjel A, Bettahar MM (2010) Silica supported nanopalladium prepared by hydrazine reduction. Compt Rendus Chim 13:1433–1439CrossRefGoogle Scholar
  11. 11.
    Penzien J, Haeßner C, Jentys A et al (2004) Heterogeneous catalysts for hydroamination reactions: structure–activity relationship. J Catal 221:302–312CrossRefGoogle Scholar
  12. 12.
    Li Y, Bastakoti BP, Abe H et al (2015) A dual soft-template synthesis of hollow mesoporous silica spheres decorated with Pt nanoparticles as a CO oxidation catalyst. RSC Adv 5:97928–97933CrossRefGoogle Scholar
  13. 13.
    Panpranot J, Tangjitwattakorn O, Praserthdam P, Goodwin JG (2005) Effects of Pd precursors on the catalytic activity and deactivation of silica-supported Pd catalysts in liquid phase hydrogenation. Appl Catal A Gen 292:322–327CrossRefGoogle Scholar
  14. 14.
    Gaillard F, Li X, Uray M, Vernoux P (2004) Electrochemical promotion of propene combustion in air excess on perovskite catalyst. Catal Lett 96:177–183CrossRefGoogle Scholar
  15. 15.
    Nagai M, Huang J, Cui D et al (2017) Two-step reprecipitation method with size and zeta potential controllability for synthesizing semiconducting polymer nanoparticles. Colloid Polym Sci 295:1153–1164CrossRefGoogle Scholar
  16. 16.
    Renna LA, Boyle CJ, Gehan TS, Venkataraman D (2015) Polymer nanoparticle assemblies: a versatile route to functional mesostructures. Macromolecules 48:6353–6368CrossRefGoogle Scholar
  17. 17.
    Wang Z, Huang J, Huang W et al (2019) Agglomeration controllable reprecipitation method using solvent mixture for synthesizing conductive polymer nanoparticles. Colloid Polym Sci 297:69–76CrossRefGoogle Scholar
  18. 18.
    Potai R, Traiphol R (2013) Controlling chain organization and photophysical properties of conjugated polymer nanoparticles prepared by reprecipitation method: the effect of initial solvent. J Colloid Interface Sci 403:58–66CrossRefGoogle Scholar
  19. 19.
    Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17:657–669CrossRefGoogle Scholar
  20. 20.
    Jeevanandam J, Barhoum A, Chan YC, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074CrossRefGoogle Scholar
  21. 21.
    Gawande MB, Zboril R, Malgras V, Yamauchi Y (2015) Integrated nanocatalysts: a unique class of heterogeneous catalysts. J Mater Chem A 3:8241–8245CrossRefGoogle Scholar
  22. 22.
    Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754CrossRefGoogle Scholar
  23. 23.
    Mondal J, Biswas A, Chiba S, Zhao Y (2015) Cu0 nanoparticles deposited on nanoporous polymers: a recyclable heterogeneous nanocatalyst for Ullmann coupling of aryl halides with amines in water. Sci Rep 5:8294CrossRefGoogle Scholar
  24. 24.
    Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325CrossRefGoogle Scholar
  25. 25.
    Jiang H-L, Xu Q (2011) Porous metal–organic frameworks as platforms for functional applications. Chem Commun 47:3351–3370CrossRefGoogle Scholar
  26. 26.
    Mohamedali M, Henni A, Ibrahim H (2018) Recent advances in supported metal catalysts for syngas production from methane. ChemEngineering 2:1–23CrossRefGoogle Scholar
  27. 27.
    Trueba M, Trasatti SP (2005) γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 17:3393–3403CrossRefGoogle Scholar
  28. 28.
    Singh V, Sapehiyia V, Srivastava V, Kaur S (2006) ZrO2-pillared clay: an efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones. Catal Commun 7:571–578CrossRefGoogle Scholar
  29. 29.
    Upadhyay PR, Srivastava V (2016) Silica tethered ruthenium catalyst for the hydrogenation of CO2 gas. Lett Org Chem 13:380–387CrossRefGoogle Scholar
  30. 30.
    Upadhyay PR, Srivastava V (2016) Heterogeneous silica tethered ruthenium catalysts for carbon sequestration reaction. Catal Lett 146:1478–1486CrossRefGoogle Scholar
  31. 31.
    Upadhyay PR, Srivastava V (2016) Titanium dioxide supported ruthenium nanoparticles for carbon sequestration reaction. Nanosystems 7:513–517Google Scholar
  32. 32.
    Ghiaci M, Valikhani D, Sadeghi Z (2012) Synthesis and characterization of silica-supported Pd nanoparticles and its application in the Heck reaction. Chin Chem Lett 23:887–890CrossRefGoogle Scholar
  33. 33.
    Srivastava V (2017) Mesoporous silica supported Ru nanoparticles for hydrogenation of CO2 molecule. Lett Org Chem 14:74–79CrossRefGoogle Scholar
  34. 34.
    Srivastava V (2017) Active ruthenium(0) nanoparticles catalyzed wittig-type olefination reaction. Catal Lett 147:693–703CrossRefGoogle Scholar
  35. 35.
    Srivastava V (2016) Active heterogeneous Ru nanocatalysts for CO2 hydrogenation reaction. Catal Letters 146:2630–2640CrossRefGoogle Scholar
  36. 36.
    Srivastava V (2014) Ru-exchanged MMT clay with functionalized ionic liquid for selective hydrogenation of CO2 to formic acid. Catal Lett 144:2221–2226CrossRefGoogle Scholar
  37. 37.
    Balu AM, Pineda A, Campelo JM, Gai PL, Luque R, Romero AA (2010) Fe/Al synergy in Fe2O3 nanoparticles supported on porous aluminosilicate materials: excelling activities in oxidation reactions. Chem Commun 46:7825–7827CrossRefGoogle Scholar
  38. 38.
    Upadhyay P, Srivastava V (2016) Synthesis of monometallic Ru/TiO2 catalysts and selective hydrogenation of CO2 to formic acid in ionic liquid. Catal Letters 146:12–21CrossRefGoogle Scholar
  39. 39.
    Ramprakash Upadhyay P, Srivastava V (2016) Selective hydrogenation of CO to methane over TiO2-supported ruthenium nanoparticles. In: Proceedings on materials today. pp 4093–4096Google Scholar
  40. 40.
    Upadhyay PR, Srivastava V (2016) Selective hydrogenation of CO2 gas to formic acid over nanostructured Ru-TiO2 catalysts. RSC Adv 6:42297–42306CrossRefGoogle Scholar
  41. 41.
    Bulushev DA, Ross JRH (2018) Towards sustainable production of formic acid. Chemsuschem 11:821–836CrossRefGoogle Scholar
  42. 42.
    Reymond H, Corral-Pérez JJ, Urakawa A, Rudolf von Rohr P (2018) Towards a continuous formic acid synthesis: a two-step carbon dioxide hydrogenation in flow. React Chem Eng 3:912–919CrossRefGoogle Scholar
  43. 43.
    Bulushev DA, Ross JRH (2018) Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates. Catal Rev 60:566–593CrossRefGoogle Scholar
  44. 44.
    van Putten R, Wissink T, Swinkels T, Pidko EA (2019) Fuelling the hydrogen economy: scale-up of an integrated formic acid-to-power system. Int J Hydr Energy 56(26):7531–7534Google Scholar
  45. 45.
    Mellmann D, Sponholz P, Junge H, Beller M (2016) Formic acid as a hydrogen storage material—development of homogeneous catalysts for selective hydrogen release. Chem Soc Rev 45:3954–3988CrossRefGoogle Scholar
  46. 46.
    Álvarez A, Bansode A, Urakawa A et al (2017) Challenges in the greener production of formates/formic acid, methanol, and dme by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838CrossRefGoogle Scholar
  47. 47.
    Weilhard A, Qadir MI, Sans V, Dupont J (2018) Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids. ACS Catal 8:1628–1634CrossRefGoogle Scholar
  48. 48.
    Saeidi S, Amin S, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81CrossRefGoogle Scholar
  49. 49.
    Upadhyay P, Srivastava V (2015) Ruthenium nanoparticle-intercalated montmorillonite clay for solvent-free alkene hydrogenation reaction. RSC Adv 5:740–745CrossRefGoogle Scholar
  50. 50.
    Upadhyay PR, Srivastava V (2017) Ionic liquid mediated in situ synthesis of Ru nanoparticles for CO2 hydrogenation reaction. Catal Letters 147:1051–1060CrossRefGoogle Scholar
  51. 51.
    Srivastava VK, Eilbracht P (2009) Ruthenium carbonyl-complex catalyzed hydroaminomethylation of olefins with carbon dioxide and amines. Catal Commun 10:1791–1795CrossRefGoogle Scholar
  52. 52.
    Brennecke JF, Gurkan BE (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 1:3459–3464CrossRefGoogle Scholar
  53. 53.
    Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRefGoogle Scholar
  54. 54.
    Dai W-L, Luo S-L, Yin S-F, Au C-T (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A Gen 366:2–12CrossRefGoogle Scholar
  55. 55.
    Srivastava V (2014) In situ generation of Ru nanoparticles to catalyze CO2 hydrogenation to formic acid. Catal Letters 144:1745–1750CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Prashant Gautam
    • 1
  • Praveenkumar Ramprakash Upadhyay
    • 1
  • Vivek Srivastava
    • 1
    Email author
  1. 1.Basic Sciences: ChemistryNIIT UniversityNeemranaIndia

Personalised recommendations