Advertisement

Efficient and Selective Ni/Al2O3–C Catalyst Derived from Metal–Organic Frameworks for the Hydrogenation of Furfural to Furfuryl Alcohol

  • Feng Hu
  • Yuan Wang
  • Siquan Xu
  • Zongqi Zhang
  • Yuan Chen
  • Jingdeng Fan
  • Hui Yuan
  • Lijing Gao
  • Guomin XiaoEmail author
Article
  • 7 Downloads

Abstract

Currently, precious metal catalysts or toxic copper-chromium catalysts are widely used in the catalytic hydrogenation of furfural. In this study, the selective hydrogenation of furfural to furfuryl alcohol was performed over alumina-carbon matrix embedded Ni nanoparticles catalyst. The Ni-loaded metal organic framework precursors were synthesized by reverse microemulsion method (water in oil), then the Ni/Al2O3–C catalysts were obtained by pyrolysis under a nitrogen atmosphere. Various characterizations including XRD, XPS, SEM, TEM, TPR, TPD and TG were carried out to reveal the microstructure and chemical composition of the prepared samples. The results showed that the hexagonal platelet structure and the smaller nickel nanoparticle size(~ 8 nm) benefits from the alumina–carbon matrix support, which helped the uniform dispersion and prevented it from accumulation at high temperatures. In addition, the catalyst performance was greatly affected by the calcination conditions and metal loading. At optimized operating conditions, 98.7% conversion of furfural and 92% yield of furfuryl alcohol could be achieved over Ni0.15/Al2O3–C catalyst in the liquid phase hydrogenation reaction with a good reusability.

Graphical Abstract

Keywords

Furfural hydrogenation Furfuryl alcohol Metal organic frameworks Ni/Al2O3–C catalysts 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21276050,21406034 and 21676054), Natural Science foundation of Jiangsu (No. BK20161415), Fundamental Research Funds for the Central Universities (No. 2242018K40041).

Supplementary material

10562_2019_2766_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2101 kb)

References

  1. 1.
    Marinas A, Sheldon RA (2011) Catal Today 167:1–2CrossRefGoogle Scholar
  2. 2.
    Mariscal R, Maireles-Torres P, Ojeda M, Sadaba I, Lopez Granados M (2016) Energy Environ Sci 9:1144–1189CrossRefGoogle Scholar
  3. 3.
    Dias AS, Lima S, Pillinger M, Valente AA (2006) Carbohydr Res 341:2946–2953CrossRefGoogle Scholar
  4. 4.
    Sitthisa S, Resasco DE (2011) Catal Lett 141:784–791CrossRefGoogle Scholar
  5. 5.
    Yan K, Wu G, Lafleur T, Jarvis C (2014) Renew Sustain Energy Rev 38:663–676CrossRefGoogle Scholar
  6. 6.
    Zeitsch KJ (2000) chemistry and technology of furfural and its many by-products. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Sharma RV, Das U, Sammynaiken R, Dalai AK (2013) Appl Catal A 454:127–136CrossRefGoogle Scholar
  8. 8.
    Yang Y, Ma J, Jia X, Du Z, Duan Y, Xu J (2016) RSC Adv 6:51221–51228CrossRefGoogle Scholar
  9. 9.
    Rodiansono, Khairi S, Hara T, Ichikuni N, Shimazu S (2012) Catal Sci Technol 2:2139–2145CrossRefGoogle Scholar
  10. 10.
    Putro WS, Kojima T, Hara T, Ichikuni N, Shimazu S (2017) Catal Sci Technol 7:3637–3646CrossRefGoogle Scholar
  11. 11.
    Shi D, Yang Q, Peterson C, Lamic-Humblot A-F, Girardon J-S, Griboval-Constant A, Stievano L, Sougrati MT, Briois V, Bagot PAJ, Wojcieszak R, Paul S, Marceau E (2018) Catal Today.  https://doi.org/10.1016/j.cattod.2018.11.041 Google Scholar
  12. 12.
    O’Driscoll Á, Leahy JJ, Curtin T (2017) Catal Today 279:194–201CrossRefGoogle Scholar
  13. 13.
    Taylor MJ, Durndell LJ, Isaacs MA, Parlett CMA, Wilson K, Lee AF, Kyriakou G (2016) Appl Catal B 180:580–585CrossRefGoogle Scholar
  14. 14.
    Yan K, Wu G, Lafleur T, Jarvis C (2014) Renew Sustain Energy Rev 38:663–676CrossRefGoogle Scholar
  15. 15.
    Wang Y, Miao Y, Li S, Gao L, Xiao G (2017) Mol Catal 436:128–137CrossRefGoogle Scholar
  16. 16.
    (2018) Journal of Industrial and Engineering Chemistry 62:96-105Google Scholar
  17. 17.
    Kotbagi TV, Gurav HR, Nagpure AS, Chilukuri SV, Bakker MG (2016) RSC Adv 6:67662–67668CrossRefGoogle Scholar
  18. 18.
    Jia P, Lan X, Li X, Wang T (2018) ACS Sustain Chem Eng 6:13287–13295CrossRefGoogle Scholar
  19. 19.
    Zhang Y-F, Qiu L-G, Yuan Y-P, Zhu Y-J, Jiang X, Xiao J-D (2014) Appl Catal B 144:863–869CrossRefGoogle Scholar
  20. 20.
    Arlin Jose A, Hideto H, Chun W, Masanori A, Qiang X (2014) Chemistry 20:8279–8282CrossRefGoogle Scholar
  21. 21.
    Sun JK, Xu Q (2014) Energy Environ Sci 7:2071–2100CrossRefGoogle Scholar
  22. 22.
    Raja D, Pradip P, Rahul B, Pankaj P (2012) Nanoscale 4:591–599CrossRefGoogle Scholar
  23. 23.
    Shen K, Chen X, Chen J, Li Y (2016) Cheminform 47:Google Scholar
  24. 24.
    Thierry L, Ludovic L, Christophe V (2006) Jér?Me M, Gérard F, Mohamed H, Francis T, Sandrine B, Llewellyn PL, Michel L. J Am Chem Soc 128:10223–10230CrossRefGoogle Scholar
  25. 25.
    Yang X, Meng Q, Ding G, Wang Y, Chen H, Zhu YL, Li YW (2018) Appl Catal A 561:78–86CrossRefGoogle Scholar
  26. 26.
    Behrens M, Zander S, Kurr P, Jacobsen N, Senker J, Koch G, Ressler T, Fischer RW, Schloegl R (2013) J Am Chem Soc 135:6061–6068CrossRefGoogle Scholar
  27. 27.
    Ekwall P, Mandell L, Solyom P (1971) J Colloid Interface Sci 35:266–272CrossRefGoogle Scholar
  28. 28.
    Benzaqui M, Pillai RS, Sabetghadam A, Benoit V, Normand P, Marrot J, Menguy N, Montero D, Shepard W, Tissot A, Martineau-Corcos C, Sicard C, Mihaylov M, Carn F, Beurroies I, Llewellyn PL, De Weireld G, Hadjiivanov K, Gascon J, Kapteijn F, Maurin G, Steunou N, Serre C (2017) Chem Mater 29:10326–10338CrossRefGoogle Scholar
  29. 29.
    Yang SJ, Nam S, Kim T, Im JH, Jung H, Kang JH, Wi S, Park B, Park CR (2013) J Am Chem Soc 135:7394–7397CrossRefGoogle Scholar
  30. 30.
    Fei P, Song F, Zhang Q, Tan Y, Han Y (2016) Chem Eng J 293:129–138CrossRefGoogle Scholar
  31. 31.
    Liu L, Lou H, Chen M (2016) Int J Hydrogen Energy 41:14721–14731CrossRefGoogle Scholar
  32. 32.
    Hou ZY, Yokota O, Tanaka T, Yashima T (2003) Applied Catalysis a-General 253:381–387CrossRefGoogle Scholar
  33. 33.
    Ho SC, Chou TC (1995) Ind Eng Chem Res 34:2279–2284CrossRefGoogle Scholar
  34. 34.
    Li CP, Chen YW (1995) Thermochim Acta 256:457–465CrossRefGoogle Scholar
  35. 35.
    Wang WJ, Chen YW (1991) Appl Catal 77:223–233CrossRefGoogle Scholar
  36. 36.
    Lu H, Yin H, Liu Y, Jiang T, Yu L (2008) Catal Commun 10:313–316CrossRefGoogle Scholar
  37. 37.
    Ding C, Wang J, Jia Y, Ai G, Liu S, Liu P, Zhang K, Han Y, Ma X (2016) Int J Hydrogen Energy 41:10707–10718CrossRefGoogle Scholar
  38. 38.
    Xiao-Feng Y, Aiqin W, Botao Q, Jun L, Jingyue L, Tao Z (2013) Acc Chem Res 46:1740CrossRefGoogle Scholar
  39. 39.
    Dehui D, Xiaoqi C, Liang Y, Xing W, Qingfei L, Yun L, Huaixin Y, Huanfang T, Yongfeng H, Peipei D (2015) Sci Adv 1:e1500462–e1500462CrossRefGoogle Scholar
  40. 40.
    Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T (2014) Nat Commun 5:5634CrossRefGoogle Scholar
  41. 41.
    Yu W, Xiong K, Ji N, Porosoff MD, Chen JG (2014) J Catal 317:253–262CrossRefGoogle Scholar
  42. 42.
    Hou T, Yuan L, Ye T, Gong L, Tu J, Yamamoto M, Torimoto Y, Li Q (2009) Int J Hydrogen Energy 34:9095–9107CrossRefGoogle Scholar
  43. 43.
    Su Y, Chen C, Zhu X, Zhang Y, Gong W, Zhang H, Zhao H, Wang G (2017) Dalton Trans 46:6358–6365CrossRefGoogle Scholar
  44. 44.
    Sitthisa S, An W, Resasco DE (2011) J Catal 284:90–101CrossRefGoogle Scholar
  45. 45.
    Sitthisa S, Pham T, Prasomsri T, Sooknoi T, Mallinson RG, Resasco DE (2011) J Catal 280:17–27CrossRefGoogle Scholar
  46. 46.
    Vorotnikov V, Mpourmpakis G, Vlachos DG (2012) ACS Catal 2:2496–2504CrossRefGoogle Scholar
  47. 47.
    Medlin JW (2011) ACS Catal 1:1284–1297CrossRefGoogle Scholar
  48. 48.
    Baker LR, Kennedy G, Van Spronsen M, Hervier A, Cai X, Chen S, Wang L-W, Somorjai GA (2012) J Am Chem Soc 134:14208–14216CrossRefGoogle Scholar
  49. 49.
    Yang Y, Du Z, Huang Y, Lu F, Wang F, Gao J, Xu J (2013) Green Chem 15:1932–1940CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Feng Hu
    • 1
  • Yuan Wang
    • 1
  • Siquan Xu
    • 1
  • Zongqi Zhang
    • 1
  • Yuan Chen
    • 1
  • Jingdeng Fan
    • 1
  • Hui Yuan
    • 1
  • Lijing Gao
    • 1
  • Guomin Xiao
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations