Green Oxidation of Cyclohexanone to Adipic Acid over Phosphotungstic Acid Encapsulated in UiO-66

  • Jian FengEmail author
  • Min Li
  • Xiaojing Meng


A very stable catalyst, phosphotungstic acid (PTA) encapsulated in metal–organic framework UiO-66, was prepared by a simple one-pot solvothermal method. Characterization results show that UiO-66 is quite stable in the catalyst preparation process, and PTA is encapsulated in the cavities of UiO-66 with good dispersity. The as-synthesized composite material exhibited good catalytic activity and excellent reusability for the green oxidation of cyclohexanone to adipic acid (AA). Under mild reaction conditions, the isolated yield of AA was as high as 80.3% without the introduction of any organic solvent or phase transfer agent. The excellent immobilization effect of UiO-66 for PTA is mainly because UiO-66 has a well matched window size to confine PTA molecule in its nanocages.

Graphical Abstract


Phosphotungstic acid Metal–organic frameworks Cyclohexanone Adipic acid 



Adipic acid




Fourier transform infrared spectroscopy


Inductively coupled plasma-atomic emission spectroscopy


Metal–organic frameworks


Phosphotungstic acid


Scanning electron microscope


Transmission electron microscopy


Thermogravimetric analysis


Turnover frequency


X-ray diffraction



This work was supported by the National Natural Science Foundation of China (21302237, 51708075) and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1713335, KJQN201801527).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2764_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 34 kb)


  1. 1.
    Van de Vyver S, Roman-Leshkov Y (2013) Emerging catalytic processes for the production of adipic acid. Catal Sci Technol 3:1465–1479CrossRefGoogle Scholar
  2. 2.
    Rahman A, Mupa M, Mahamadi C (2016) A mini review on new emerging trends for the synthesis of adipic acid from metal-nano heterogeneous catalysts. Catal Lett 146:788–799CrossRefGoogle Scholar
  3. 3.
    Usui Y, Sato K (2003) A green method of adipic acid synthesis: organic solvent- and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide. Green Chem 5:373–375CrossRefGoogle Scholar
  4. 4.
    Xia CJ, Lu L, Zhao Y, Xu HY, Zhu B, Gao FF, Lin M, Dai ZY, Zou XD, Shu XT (2015) Heterogeneous oxidation of cyclohexanone catalyzed by TS-1: combined experimental and DFT studies. Chin J Catal 36:845–854CrossRefGoogle Scholar
  5. 5.
    Bhanja P, Chatterjee S, Patra AK, Bhaumik A (2018) A new microporous oxyfluorinated titanium(IV) phosphate as an efficient heterogeneous catalyst for the selective oxidation of cyclohexanone. J Colloid Interface Sci 511:92–100CrossRefGoogle Scholar
  6. 6.
    Benadji S, Mazari T, Dermeche L, Salhi N, Cadot E, Rabia C (2013) Clean alternative for adipic acid synthesis via liquid-phase oxidation of cyclohexanone and cyclohexanol over H3−2xCoxPMo12O40 catalysts with hydrogen peroxide. Catal Lett 143:749–755CrossRefGoogle Scholar
  7. 7.
    Tahar A, Benadji S, Mazari T, Dermeche L, Marchal-Roch C, Rabia C (2015) Preparation, characterization and reactivity of Keggin type phosphomolybdates, H3−2xNixPMo12O40 and (NH4)3−2xNixPMo12O40, for adipic acid synthesis. Catal Lett 145:569–575CrossRefGoogle Scholar
  8. 8.
    Patra AK, Dutta A, Bhaumik A (2013) Mesoporous core–shell Fenton nanocatalyst: a mild, operationally simple approach to the synthesis of adipic acid. Chem Eur J 19:12388–12395CrossRefGoogle Scholar
  9. 9.
    Zhu WS, Li HM, He XY, Zhang Q, Shu HM, Yan YS (2008) Synthesis of adipic acid catalyzed by surfactant-type peroxotungstates and peroxomolybdates. Catal Commun 9:551–555CrossRefGoogle Scholar
  10. 10.
    Xia CJ, Zhu B, Lin M, Shu XT (2012) A “green” cyclohexanone oxidation route catalyzed by hollow titanium silicate zeolite for preparing ε-caprolactone, 6-hydroxyhexanoic acid and adipic acid. China Pet Process Petrochem Technol 14:33–41Google Scholar
  11. 11.
    Moudjahed M, Dermeche L, Benadji S, Mazari T, Rabia C (2016) Dawson-type polyoxometalates as green catalysts for adipic acid synthesis. J Mol Catal A 414:72–77CrossRefGoogle Scholar
  12. 12.
    Ding ZB, Lian H, Wang QR, Tao FG (2004) Oxidation of cyclohexanone to adipic acid with 30% H2O2 and tungstate catalyst. Chin J Org Chem 24:319–321Google Scholar
  13. 13.
    Zhang M, Wei JF, Bai YJ, Gao Y, Wu Y, Mao YQ, Shi Z (2006) Study of clear oxidation of cyclohexanone to adipic acid using hydrogen peroxide. Chin J Org Chem 26:207–210CrossRefGoogle Scholar
  14. 14.
    Ye TX, Ma XN, Liu JY (2009) Catalytic oxidation of cyclohexanone to adipic acid catalysed by supported phosphotungstic acid. Ind Catal 17:46–48Google Scholar
  15. 15.
    Wang XD, Wu WY, Tu GF, Jiang KX (2010) Oxidation of cyclohexanone to adipic acid catalyzed by lactam-based ionic liquid. Chin J Org Chem 30:1935–1938CrossRefGoogle Scholar
  16. 16.
    Yang XL, Qiao LM, Dai WL (2015) Phosphotungstic acid encapsulated in metal–organic framework UiO-66: an effective catalyst for the selective oxidation of cyclopentene to glutaraldehyde. Microporous Mesoporous Mater 211:73–81CrossRefGoogle Scholar
  17. 17.
    Wang XS, Li L, Liang J, Huang YB, Cao R (2017) Boosting oxidative desulfurization of model and real gasoline over phosphotungstic acid encapsulated in metal–organic frameworks: the window size matters. ChemCatChem 9:971–979CrossRefGoogle Scholar
  18. 18.
    Gamelas JAF, Oliveira F, Evtyugina MG, Portugal I, Evtuguin DV (2016) Catalytic oxidation of formaldehyde by ruthenium multisubstituted tungstosilicic polyoxometalate supported on cellulose/silica hybrid. Appl Catal A 509:8–16CrossRefGoogle Scholar
  19. 19.
    Wu NJ, Li BS, Ma W, Han CY (2014) Synthesis of lacunary polyoxometalate encapsulated into hexagonal mesoporous silica and their catalytic performance in esterification. Microporous Mesoporous Mater 186:155–162CrossRefGoogle Scholar
  20. 20.
    Thompson DJ, Zhang Y, Ren T (2014) Polyoxometalate [γ-SiW10O34(H2O)2]4− on MCM-41 as catalysts for sulfide oxygenation with hydrogen peroxide. J Mol Catal A 392:188–193CrossRefGoogle Scholar
  21. 21.
    Suo L, Meng RQ, Zheng DM, Wu LX, Bi LH (2014) Preparation, characterization and catalytic activity studies of organoruthenium-supported polyoxotungstates on SBA-15. Appl Organomet Chem 28:845–851CrossRefGoogle Scholar
  22. 22.
    Du DY, Qin JS, Li SL, Su ZM, Lan YQ (2014) Recent advances in porous polyoxometalate based metal–organic framework materials. Chem Soc Rev 43:4615–4632CrossRefGoogle Scholar
  23. 23.
    Bai Y, Dou YB, Xie LH, Rutledge W, Li JR, Zhou HC (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367CrossRefGoogle Scholar
  24. 24.
    Huang G, Chen YZ, Jiang HL (2016) Metal–organic frameworks for catalysis. Acta Chim Sin 74:113–129CrossRefGoogle Scholar
  25. 25.
    Jiao L, Wang Y, Jiang HL, Xu Q (2017) Metal–organic frameworks as platforms for catalytic applications. Adv Mater 29:1703663Google Scholar
  26. 26.
    Cirujano FG (2017) MOFs vs. zeolites: carbonyl activation with M(IV) catalytic sites. Catal Sci Technol 7:5482–5494CrossRefGoogle Scholar
  27. 27.
    Hu XF, Lu YK, Dai FN, Liu CG, Liu YQ (2013) Host–guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via “bottle around ship”: an effective catalyst for oxidative desulfurization. Microporous Mesoporous Mater 170:36–44CrossRefGoogle Scholar
  28. 28.
    Zhang FM, Jin Y, Shi J, Zhong YJ, Zhu WD, El-Shall MS (2015) Polyoxometalates confined in the mesoporous cages of metal–organic framework MIL-100(Fe): efficient heterogeneous catalysts for esterification and acetalization reactions. Chem Eng J 269:236–244CrossRefGoogle Scholar
  29. 29.
    Chen LY, Luque R, Li YW (2017) Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev 46:4614–4630CrossRefGoogle Scholar
  30. 30.
    Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851CrossRefGoogle Scholar
  31. 31.
    Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532CrossRefGoogle Scholar
  32. 32.
    Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718CrossRefGoogle Scholar
  33. 33.
    Granadeiro CM, Ribeiro SO, Karmaoui M, Valenca R, Ribeiro JC, Castro B, Cunha-Silva L, Balula SS (2015) Production of ultra-deep sulfur-free diesels using a sustainable catalytic system based on UiO-66(Zr). Chem Commun 51:13818–13821CrossRefGoogle Scholar
  34. 34.
    Fei B, Lu H, Chen W, Xin JH (2006) Ionic peapods from carbon nanotubes and phosphotungstic acid. Carbon 44:2261–2264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringChongqing University of Science and TechnologyChongqingChina

Personalised recommendations