Fabrication of Magnetic CLEA-protease Nanocomposite: High Progression in Biotechnology and Protein Waste Management

  • Mohammad Hashemabadi
  • Arastoo Badoei-DalfardEmail author


Magnetic nanocomposite opens ample opportunities for large scale application in industrial biocatalyst market. In this study, we isolated a high potent protease producing Bacillus cereus from several slaughterhouse wastes located in Kerman province, Iran. Results showed that, it was an organic solvent tolerant, thermophile protease which showed 20% increase in protease stability in the presence of n-hexane. It was active in a wide range of pHs and temperatures. A magnetic CLEA-protease nanocomposite (mCLEA-P-NC) was constructed successfully which confirmed by SEM and FTIR analysis. mCLEA-P-NC displayed Km value 4.6 folds lower than free enzyme. Biotechnological applications showed nearly 44% of proteins which obtained from waste water of local yogurt were degraded by mCLEA-P-NC. In addition, it showed high potential in silver recovery and de-haring process. A simple mechanic system was manifested to use mCLEA-P-NC in washing performance. These results indicated high potential of this protease nanocomposite in biotechnological application especially in recycling of waste proteins and washing performance.

Graphical Abstract


Protease Bacillus cereus Immobilization Nanocomposite 



The authors express their gratitude to the Research Council of the Shahid Bahonar University of Kerman, Kerman (Iran) for financial support during this project.

Compliance with Ethical Standards

Conflict of interest

All authors declared that they have no conflict of interest.


  1. 1.
    Gubin SP, Koksharov YA, Khomutov G, Yurkov GYE (2005) Russ Chem Rev 74:489–520CrossRefGoogle Scholar
  2. 2.
    Das A, Singh J, Yogalakshmi K (2017) Int Biodeterior Biodegrad 117:183–189CrossRefGoogle Scholar
  3. 3.
    Grewal J, Ahmad R, Khare S (2017) Bioresour Technol 242:236–243CrossRefGoogle Scholar
  4. 4.
    Konwarh R, Karak N, Rai SK, Mukherjee AK (2009) Nanotechnology 20:225107CrossRefGoogle Scholar
  5. 5.
    Huang SH, Liao MH, Chen DH (2003) Biotechnol Progr 19:1095–1100CrossRefGoogle Scholar
  6. 6.
    Namdeo M, Bajpai S (2009) J Mol Catal B Enzym 59:134–139CrossRefGoogle Scholar
  7. 7.
    Sangeetha K, Abraham TE (2006) J Mol Catal B Enzym 38:171–177CrossRefGoogle Scholar
  8. 8.
    Banik RM, Prakash M (2004) Microbiol Res 159(2):135–140CrossRefGoogle Scholar
  9. 9.
    Park J-M, Kim M, Park H-S, Jang A, Min J, Kim Y-H (2013) Int J Biol Macromol 54:37–43CrossRefGoogle Scholar
  10. 10.
    Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Nat Biotechnol 22:211CrossRefGoogle Scholar
  11. 11.
    Chang Q, Tang H (2014) Molecules 19:15768–15782CrossRefGoogle Scholar
  12. 12.
    Wang W, Li Z, Liu W, Wu J (2012) Sep Purif Technol 89:206–211CrossRefGoogle Scholar
  13. 13.
    Huang Q, Tang J, Weber WJ Jr (2005) Water Res 39:3021–3027CrossRefGoogle Scholar
  14. 14.
    Mao L, Lu J, Habteselassie M, Luo Q, Gao S, Cabrera M, Huang Q (2010) Environ Sci Technol 44:2599–2604CrossRefGoogle Scholar
  15. 15.
    Tao H-C, Gao Z-Y, Ding H, Xu N, Wu W-M (2012) Bioresour Technol 111:92–97CrossRefGoogle Scholar
  16. 16.
    Liang H, Tang Q, Yu K, Li S, Ke J (2007) Mater Lett 61:1020–1022CrossRefGoogle Scholar
  17. 17.
    Nakiboğlu N, Toscali D, NİSLİ G (2003) Turk J Chem 27:127–133Google Scholar
  18. 18.
    Shankar S, More S, Laxman RS (2010) J Sci Eng Technol 6:60–69Google Scholar
  19. 19.
    Onuh JO, Girgih AT, Aluko RE, Aliani M (2014) Food Chem 150:366–373CrossRefGoogle Scholar
  20. 20.
    Heidemann R, Zhang C, Qi H, Rule JL, Rozales C, Park S, Chuppa S, Ray M, Michaels J, Konstantinov K (2000) Cytotechnology 32:157–167CrossRefGoogle Scholar
  21. 21.
    Shobharani P, Agrawal R (2009) Int J Food Sci Nutr 60:70–83CrossRefGoogle Scholar
  22. 22.
    Pasupuleti VK, Holmes C, Demain AL (2008) Protein hydrolysates in biotechnology. Springer, New York, pp 1–9CrossRefGoogle Scholar
  23. 23.
    Ogino H, Yasui K, Shiotani T, Ishihara T, Ishikawa H (1995) Appl Environ Microbiol 61:4258–4262Google Scholar
  24. 24.
    Badoei-Dalfard A, Khajeh K, Asghari SM, Ranjbar B, Karbalaei-Heidari HR (2010) J Biochem 148:231–238CrossRefGoogle Scholar
  25. 25.
    Tang X, Pan Y, Li S, He B (2008) Bioresour Technol 99:7388–7392CrossRefGoogle Scholar
  26. 26.
    Moradian F, Khajeh K, Naderi-Manesh H, Sadeghizadeh M (2009) Appl Biochem Biotechnol 159:33–45CrossRefGoogle Scholar
  27. 27.
    Ramezani-Pour N, Badoei-Dalfard A, Namaki-Shoushtari A, Karami Z (2015) Biocatal Biotransform 33:156–166CrossRefGoogle Scholar
  28. 28.
    Ahmadi A, Ghobadi S, Khajeh K, Nomanpour B, Dalfard AB (2010) J Iran Chem Soc 7:432–440CrossRefGoogle Scholar
  29. 29.
    Azadian F, Badoei-dalfard A, Namaki-Shoushtari A, Hassanshahian M (2016) Mol Biol Res Commun 5(3):143–155Google Scholar
  30. 30.
    Badoei-Dalfard A, Karami Z, Ravan H (2015) Prep Biochem Biotechnol 45:128–143CrossRefGoogle Scholar
  31. 31.
    Reza R, Pérez CM, González CR, Romero H, Casillas PG (2010) Open Chem 8:1041–1046CrossRefGoogle Scholar
  32. 32.
    Badoei-Dalfard A, Karami Z, Malekabadi S (2019) Bioresour Technol 278:473–476CrossRefGoogle Scholar
  33. 33.
    Silvestre MPC, Morais HA, Silva VDM, Silva MR (2014) Ciências Biológicas e da Saúde 19:143–147Google Scholar
  34. 34.
    Conesa C, FitzGerald RJ (2013) J Agric Food Chem 61:10135–10144CrossRefGoogle Scholar
  35. 35.
    Sinha R, Khare S (2015) Bioprocess Biosyst Eng 38:739–748CrossRefGoogle Scholar
  36. 36.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefGoogle Scholar
  37. 37.
    Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) J Am Chem Soc 127:2264–2271CrossRefGoogle Scholar
  38. 38.
    Lin Y, Wei Y, Sun Y, Wang J (2012) Mater Res Bull 47:614–618CrossRefGoogle Scholar
  39. 39.
    Gholami T, Salavati-Niasari M, Bazarganipour M, Noori E (2013) Superlattices Microstruct 61:33–41CrossRefGoogle Scholar
  40. 40.
    Bass JL, Turner GL (1997) J Phys Chem B 101:10638–10644CrossRefGoogle Scholar
  41. 41.
    Hu J, Yuan B, Zhang Y, Guo M (2015) RSC Adv 5:99439–99447CrossRefGoogle Scholar
  42. 42.
    Yavuz H, Bayramoğlu G, Kaçar Y, Denizli A, Arıca MY (2002) Biochem Eng J 10:1–8CrossRefGoogle Scholar
  43. 43.
    Jiang D-S, Long S-Y, Huang J, Xiao H-Y, Zhou J-Y (2005) Biochem Eng J 25:15–23CrossRefGoogle Scholar
  44. 44.
    Mukherjee AK, Adhikari H, Rai SK (2008) Biochem Eng J 39:353–361CrossRefGoogle Scholar
  45. 45.
    Sen S, Dasu V, Dutta K, Mandal B (2011) Res J Microbiol 6:769–783CrossRefGoogle Scholar
  46. 46.
    Jin X, Li J-F, Huang P-Y, Dong X-Y, Guo L-L, Yang L, Cao Y-C, Wei F, Zhao Y-D, Chen H (2010) J Magn Magn Mater 322:2031–2037CrossRefGoogle Scholar
  47. 47.
    Mala M, Srividya S (2010) Indian J Microbiol 50:309–317CrossRefGoogle Scholar
  48. 48.
    Sareen R, Mishra P (2008) Appl Microbiol Biotechnol 79:399–405CrossRefGoogle Scholar
  49. 49.
    Atacan K, Çakıroğlu B, Özacar M (2016) Food Chem 212:460–468CrossRefGoogle Scholar
  50. 50.
    e Silva ACS, Silveira JN (2013) Am J Food Technol 8:1–16CrossRefGoogle Scholar
  51. 51.
    Wang F, Guo C, Yang L-R, Liu C-Z (2010) Bioresour Technol 101:8931–8935CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran

Personalised recommendations