Advertisement

Catalysis Letters

, Volume 149, Issue 6, pp 1595–1610 | Cite as

Band Gap Modification of TiO2 Nanoparticles by Ascorbic Acid-Stabilized Pd Nanoparticles for Photocatalytic Suzuki–Miyaura and Ullmann Coupling Reactions

  • Fahimeh Feizpour
  • Maasoumeh JafarpourEmail author
  • Abdolreza RezaeifardEmail author
Article
  • 16 Downloads

Abstract

In this study, synthesis, characterization and photocatalytic performance of surface-modified TiO2 nanoparticles with ascorbic acid-stabilized Pd nanoparticles are presented. The structure, composition and morphology of as-prepared nanophotocatalyst were characterized by UV-DRS, FT-IR, ICP-AES, TEM and XPS analysis. Ascorbic acid-stabilized Pd nanoparticles induced visible light driven photocatalytic property on the surface of TiO2 which are otherwise insensitive to visible light owing to the wide band gap. The catalytic system worked well for the Suzuki–Miyaura cross-coupling and Ullmann homocoupling under compact fluorescent light as a visible source with significant activity, selectivity and recyclability. Good to excellent yields of biaryl products were obtained for various aryl halides having different electronic demands and even aryl chlorides. Our results proposed that the improved photoactivity predominantly benefits from the synergistic effects of ascorbic acid-stabilized Pd nanoparticles on TiO2 nanoparticles that cause efficient separation and photoexcited charge carriers and photoredox capability of nanocatalyst. Thus, tuning of band gap of TiO2 making a visible light sensitive photocatalyst, demonstrates a significant advancement in the photocatalytic Suzuki–Miyaura and Ullmann coupling reactions.

Graphical Abstract

Keywords

Photo cross coupling reactions Titanium oxide nanoparticles Ascorbic acid complex Visible light driven catalyst Suzuki–Miyaura coupling reaction 

Notes

Acknowledgements

The authors are grateful for financial support of this work by University of Birjand and “Iran National Science Foundation” (Grant No. 96004509).

Supplementary material

10562_2019_2749_MOESM1_ESM.docx (474 kb)
Supplementary material 1 (DOCX 473 KB)

References

  1. 1.
    Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735CrossRefGoogle Scholar
  2. 2.
    Rajeshwar K, De Tacconi NR (2009) Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. Chem Soc Rev 38:1984–1998CrossRefGoogle Scholar
  3. 3.
    Lu B, Li X, Wang T et al (2013) WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. J Mater Chem A 1:3900–3906CrossRefGoogle Scholar
  4. 4.
    Amano F, Yamakata A, Nogami K et al (2008) Visible light responsive pristine metal oxide photocatalyst: enhancement of activity by crystallization under hydrothermal treatment. J Am Chem Soc 130:17650–17651CrossRefGoogle Scholar
  5. 5.
    Chan SHS, Yeong Wu T, Juan JC, Teh CY (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86:1130–1158CrossRefGoogle Scholar
  6. 6.
    Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011CrossRefGoogle Scholar
  7. 7.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425CrossRefGoogle Scholar
  8. 8.
    Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28CrossRefGoogle Scholar
  9. 9.
    Weon S, Choi W (2016) TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environ Sci Technol 50:2556–2563CrossRefGoogle Scholar
  10. 10.
    Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  11. 11.
    Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990CrossRefGoogle Scholar
  12. 12.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  13. 13.
    Zhou H, Sun S, Ding H (2017) Surface organic modification of TiO2 powder and relevant characterization. Adv Mater Sci Eng.  https://doi.org/10.1155/2017/9562612 Google Scholar
  14. 14.
    Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106:4428–4453CrossRefGoogle Scholar
  15. 15.
    Nolan M, Iwaszuk A, Lucid AK et al (2016) Design of novel visible light active photocatalyst materials: surface modified TiO2. Adv Mater 28:5425–5446CrossRefGoogle Scholar
  16. 16.
    Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanoparticle Res 6:193–207CrossRefGoogle Scholar
  17. 17.
    Amano F, Prieto-Mahaney O-O, Terada Y et al (2009) Decahedral single-crystalline particles of anatase titanium (IV) oxide with high photocatalytic activity. Chem Mater 21:2601–2603CrossRefGoogle Scholar
  18. 18.
    Anpo M (2000) Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl Chem 72:1787–1792CrossRefGoogle Scholar
  19. 19.
    Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Luo Z, Yang Z et al (2013) Band-gap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water. RSC Adv 3:7215–7218CrossRefGoogle Scholar
  21. 21.
    Bingham S, Daoud WA (2011) Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J Mater Chem 21:2041–2050CrossRefGoogle Scholar
  22. 22.
    Xie Y, Ding K, Liu Z et al (2009) In situ controllable loading of ultrafine noble metal particles on titania. J Am Chem Soc 131:6648–6649CrossRefGoogle Scholar
  23. 23.
    Zhang G, Kim G, Choi W (2014) Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania. Energy Environ Sci 7:954–966CrossRefGoogle Scholar
  24. 24.
    Houlding VH, Gratzel M (1983) Photochemical hydrogen generation by visible light. Sensitization of titanium dioxide particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696CrossRefGoogle Scholar
  25. 25.
    Rajh T, Nedeljkovic JM, Chen LX et al (1999) Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J Phys Chem B 103:3515–3519CrossRefGoogle Scholar
  26. 26.
    Ou Y, Lin J-D, Zou H-M, Liao D-W (2005) Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms. J Mol Catal A 241:59–64CrossRefGoogle Scholar
  27. 27.
    Jafarpour M, Feizpour F, Rezaeifard A (2016) Aerobic benzylic C-H oxidation catalyzed by a titania-based organic-inorganic nanohybrid. RSC Adv 6:54649–54660CrossRefGoogle Scholar
  28. 28.
    Xagas AP, Bernard MC, Hugot-Le Goff A et al (2000) Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid. J Photochem Photobiol A 132:115–120CrossRefGoogle Scholar
  29. 29.
    Macyk W, Szaciłowski K, Stochel G et al (2010) Titanium (IV) complexes as direct TiO2 photosensitizers. Coord Chem Rev 254:2687–2701CrossRefGoogle Scholar
  30. 30.
    Yang C, Gong C, Peng T et al (2010) High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film. J Hazard Mater 178:152–156CrossRefGoogle Scholar
  31. 31.
    Molnár Á (2011) Efficient, selective, and recyclable palladium catalysts in carbon- carbon coupling reactions. Chem Rev 111:2251–2320CrossRefGoogle Scholar
  32. 32.
    Kotha S, Lahiri K (2007) Expanding the diversity of polycyclic aromatics through a Suzuki-Miyaura cross-coupling strategy. Eur J Org Chem 2007:1221–1236CrossRefGoogle Scholar
  33. 33.
    Fihri A, Meunier P, Hierso J-C (2007) Performances of symmetrical achiral ferrocenylphosphine ligands in palladium-catalyzed cross-coupling reactions: a review of syntheses, catalytic applications and structural properties. Coord Chem Rev 251:2017–2055CrossRefGoogle Scholar
  34. 34.
    Li C-J (2005) Organic reactions in aqueous media with a focus on carbon- carbon bond formations: a decade update. Chem Rev 105:3095–3166CrossRefGoogle Scholar
  35. 35.
    Kim S-W, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc 124:7642–7643CrossRefGoogle Scholar
  36. 36.
    Fihri A, Bouhrara M, Nekoueishahraki B et al (2011) Nanocatalysts for Suzuki cross-coupling reactions. Chem Soc Rev 40:5181–5203CrossRefGoogle Scholar
  37. 37.
    Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL (2007) Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. Angew Chem Int Ed 46:7251–7254CrossRefGoogle Scholar
  38. 38.
    Chen Y-H, Hung H-H, Huang MH (2009) Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts. J Am Chem Soc 131:9114–9121CrossRefGoogle Scholar
  39. 39.
    Han D, Bao Z, Xing H et al (2017) Fabrication of plasmonic Au-Pd alloy nanoparticles for photocatalytic Suzuki-Miyaura reactions under ambient conditions. Nanoscale 9:6026–6032CrossRefGoogle Scholar
  40. 40.
    Lacerda AM, Larrosa I, Dunn S (2015) Plasmon enhanced visible light photocatalysis for TiO2 supported Pd nanoparticles. Nanoscale 7:12331–12335CrossRefGoogle Scholar
  41. 41.
    Han D, Zhang Z, Bao Z et al (2018) Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions. Front Chem Sci Eng 12:24–31CrossRefGoogle Scholar
  42. 42.
    Düfert MA, Billingsley KL, Buchwald SL (2013) Suzuki-Miyaura cross-coupling of unprotected, nitrogen-rich heterocycles: substrate scope and mechanistic investigation. J Am Chem Soc 135:12877–12885CrossRefGoogle Scholar
  43. 43.
    Fu GC (2008) The development of versatile methods for palladium-catalyzed coupling reactions of aryl electrophiles through the use of P (t-Bu) 3 and PCy3 as ligands. Acc Chem Res 41:1555–1564CrossRefGoogle Scholar
  44. 44.
    Hadei N, Kantchev EAB, O’Brie CJ, Organ MG (2005) Electronic nature of N-heterocyclic carbene ligands: effect on the suzuki reaction. Org Lett 7:1991–1994CrossRefGoogle Scholar
  45. 45.
    Tanaka A, Hashimoto K, Kominami H (2012) Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J Am Chem Soc 134:14526–14533CrossRefGoogle Scholar
  46. 46.
    Zheng Z, Huang B, Qin X et al (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21:9079–9087CrossRefGoogle Scholar
  47. 47.
    Zhang H, Huang X (2016) Ligand-free Heck reactions of aryl iodides: significant acceleration of the rate through visible light irradiation at ambient temperature. Adv Synth Catal 358:3736–3742CrossRefGoogle Scholar
  48. 48.
    Xiao Q, Sarina S, Bo A et al (2014) Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal 4:1725–1734CrossRefGoogle Scholar
  49. 49.
    Xie A, Zhang K, Wu F et al (2016) Polydopamine nanofilms as visible light-harvesting interfaces for palladium nanocrystal catalyzed coupling reactions. Catal Sci Technol 6:1764–1771CrossRefGoogle Scholar
  50. 50.
    Sarina S, Zhu H, Jaatinen E et al (2013) Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc 135:5793–5801CrossRefGoogle Scholar
  51. 51.
    Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486CrossRefGoogle Scholar
  52. 52.
    Koohgard M, Hosseini-Sarvari M (2018) Enhancement of Suzuki–Miyaura coupling reaction by photocatalytic palladium nanoparticles anchored to TiO2 under visible light irradiation. Catal Commun 111:10–15CrossRefGoogle Scholar
  53. 53.
    Rezapour E, Jafarpour M, Rezaeifard A (2018) Palladium niacin complex immobilized on starch-coated maghemite nanoparticles as an efficient homo- and cross-coupling catalyst for the synthesis of symmetrical and unsymmetrical biaryls. Catal Lett 148:3165–3177CrossRefGoogle Scholar
  54. 54.
    Jafarpour M, Rezaeifard A, Feizpour F (2017) Iron ascorbic acid complex coated TiO2 nanoparticles enhancing visible-light oxidation performance. ChemistrySelect 2:2901–2909CrossRefGoogle Scholar
  55. 55.
    Jafarpour M, Feizpour F, Rezaeifard A (2017) Aerobic stereoselective oxidation of olefins on a visible-light-irradiated titanium dioxide-cobalt-ascorbic acid nanohybrid. Synlett 28:235–238CrossRefGoogle Scholar
  56. 56.
    Jafarpour M, Kargar H, Rezaeifard A (2016) A synergistic effect of a cobalt Schiff base complex and TiO2 nanoparticles on aerobic olefin epoxidation. RSC Adv 6:79085–79089CrossRefGoogle Scholar
  57. 57.
    Jafarpour M, Kargar H, Rezaeifard A (2016) A cobalt Schiff base complex on TiO2 nanoparticles as an effective synergistic nanocatalyst for aerobic C-H oxidation. RSC Adv 6:25034–25046CrossRefGoogle Scholar
  58. 58.
    Feizpour F, Jafarpour M, Rezaeifard A (2018) A tandem aerobic photocatalytic synthesis of benzimidazoles by cobalt ascorbic acid complex coated on TiO2 nanoparticles under visible light. Catal Lett 148:30–40CrossRefGoogle Scholar
  59. 59.
    Yang J, Zhang J, Zhu L et al (2006) Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity. J Hazard Mater 137:952–958CrossRefGoogle Scholar
  60. 60.
    Pillai SC, Periyat P, George R et al (2007) Synthesis of high-temperature stable anatase TiO2 photocatalyst. J Phys Chem C 111:1605–1611CrossRefGoogle Scholar
  61. 61.
    Rajh T, Nedeljkovic JM, Chen LX, Poluektov O, Thurnauer MC (1999) Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J Phys Chem B 103:3515–3519CrossRefGoogle Scholar
  62. 62.
    Ou Y, Lin JD, Zou HM, Liao DW (2005) Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms. J Mol Catal A 241:59–64CrossRefGoogle Scholar
  63. 63.
    Köse DA, Zümreoglu-Karan B (2009) Complexation of boric acid with vitamin C. New J Chem 33:1874–1881CrossRefGoogle Scholar
  64. 64.
    Kramareva NV, Stakheev AY, Tkachenko OP et al (2004) Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure. J Mol Catal A 209:97–106CrossRefGoogle Scholar
  65. 65.
    Göpel W, Anderson JA, Frankel D et al (1984) Surface defects of TiO2 (110): a combined XPS, XAES and ELS study. Surf Sci 139:333–346CrossRefGoogle Scholar
  66. 66.
    Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982CrossRefGoogle Scholar
  67. 67.
    Wang XW, Zhang YQ, Meng H et al (2011) Perpendicular magnetic anisotropy in 70 nm CoFe2O4 thin films fabricated on SiO2/Si (100) by the sol-gel method. J Alloys Compd 509:7803–7807CrossRefGoogle Scholar
  68. 68.
    Ivanova AS, Slavinskaya EM, Gulyaev RV et al (2010) Metal-support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl Catal B 97:57–71CrossRefGoogle Scholar
  69. 69.
    Menicagli R, Samaritani S, Signore G et al (2004) In vitro cytotoxic activities of 2-alkyl-4, 6-diheteroalkyl-1, 3, 5-triazines: new molecules in anticancer research. J Med Chem 47:4649–4652CrossRefGoogle Scholar
  70. 70.
    Yang F, Xie J, Guo H et al (2012) Novel discotic liquid crystal oligomers: 1, 3, 5-triazine-based triphenylene dimer and trimer with wide mesophase. Liq Cryst 39:1368–1374CrossRefGoogle Scholar
  71. 71.
    Blotny G (2006) Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron 62:9507–9522CrossRefGoogle Scholar
  72. 72.
    Xiao Q, Sarina S, Jaatinen E et al (2014) Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem 16:4272–4285CrossRefGoogle Scholar
  73. 73.
    Kowalska E, Abe R, Ohtani B (2009) Visible light-induced photocatalytic reaction of gold-modified titanium (IV) oxide particles: action spectrum analysis. Chem Commun.  https://doi.org/10.1039/B815679D Google Scholar
  74. 74.
    Kuvarega AT, Krause RWM, Mamba BB (2011) Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C 115:22110–22120CrossRefGoogle Scholar
  75. 75.
    Nasrollahzadeh M, Sajadi SM (2016) Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction. J Colloid Interface Sci 465:121–127CrossRefGoogle Scholar
  76. 76.
    Mondal P, Bhanja P, Khatun R et al (2017) Palladium nanoparticles embedded on mesoporous TiO2 material (Pd@MTiO2) as an efficient heterogeneous catalyst for Suzuki-coupling reactions in water medium. J Colloid Interface Sci 508:378–386CrossRefGoogle Scholar
  77. 77.
    Kalbasi RJ, Mosaddegh N (2011) Suzuki-Miyaura cross-coupling reaction catalyzed by nickel nanoparticles supported on poly(N-vinyl-2-pyrrolidone)/TiO2-ZrO2 composite. Bull Korean Chem Soc 32:40–44CrossRefGoogle Scholar
  78. 78.
    Wang ZJ, Ghasimi S, Landfester K, Zhang KAI (2015) Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem Mater 27:1921–1924CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Catalysis Research Laboratory, Department of Chemistry, Faculty of ScienceUniversity of BirjandBirjandIran

Personalised recommendations